Espaces métriques connexes

1 Introduction

La notion d'espace connexe va nous permettre de modèliser le concept "d'un seul tenant". Le rôle de ces espaces est, une fois encore, fondamentale en analyse et le champs d'intervention de ces ensembles est très large. On montrera en particulier ici comment le théorème des valeurs intermédiaires se généralise aux fonctions continues sur un espace métrique, puis l'on donnera des critères de connexité, plus évident à manier que la connexité elle-même.

2 Espaces métriques connexes

Dans tout ce chapitre (X,d) et (Y,d') désignent des espaces métriques .

Définition On dira que l'espace métrique (X,d) est **connexe** s'il vérifie l'une des conditions équivalentes suivantes.

- 1. Si X est réunion de deux ouverts disjoints alors l'un de ces deux ouverts est vide et l'autre égale à X.
- 2. Si X est réunion de deux fermés disjoints alors l'un de ces deux fermés est vide et l'autre égale à X.
- 3. Si l'on considère $\{0,1\}$ muni de la topologie discrète et $f: X \longrightarrow \{0,1\}$ une application continue, alors f est constante sur X.
- 4. Les seuls ensembles à la fois ouverts et fermés de X sont X lui même et l'ensemble vide.

Démonstration $1 \Leftrightarrow 2$ est évident par passage au complémentaire.

- $1 \Rightarrow 3$: Soit f un application continue de X dans $\{0,1\}$. Alors $\{f^{-1}(0); f^{-1}(1)\}$ représente une partition de E en deux ouverts (ou deux fermés) de E. Par conséquent, l'un de ces deux ouverts est vide et l'autre égale à X tout entier, ce qui implique bien que f est constante sur X.
- $3 \Rightarrow 1$: Soient U_1 et U_2 deux ouverts de X qui définissent une partition de X. Soit aussi $f: X \longrightarrow \{0,1\}$ définie par $f(U_1) = \{0\}$ et $f(U_2) = \{1\}$. f est continue et donc constante sur X. Donc l'un des deux ouverts est vide et l'autre égale à X tout entier. Cqfd $1 \Rightarrow 4$: Soit U un sous ensemble à la fois ouvert et fermé de X. Alors U^c est, lui aussi, un sous ensemble ouvert et fermé de X. Mais U et U^c définissent une partition de X en deux ouverts. X étant connexe U est ou vide ou égale à X tout entier.
- $4 \Rightarrow 1$: Supposons que U et V définissent une partition ouverte de X. Le complémentaire de U est alors égale à V et réciproquement $V^c=U$. U étant ouvert , V est alors fermé . De même U est aussi fermé. Mais X ne possède pas de sous ensemble à la fois ouvert et fermé autre que l'ensemble vide et X. Donc l'un des deux, U ou V est vide l'autre égale à X, ce qui nous donne le premier point.

Définition On dira qu'un sous ensemble U de X est **un sous espace connexe** de X (ou un connexe de X) si U est connexe pour la métrique induite de celle de X.

Exemple Un intervalle de \mathbb{R} est connexe dans \mathbb{R} (muni de sa topologie canonique). Les seuls sous ensembles connexes de \mathbb{R} sont d'ailleurs les intervalles.

3 Application continue sur un connexe

Théorème L'image d'un connexe par une application continue est un sous ensemble connexe de l'espace image de cette application.

Démonstration On supposose ici que (X,d) est un espace métrique connexe et soit $f: X \longrightarrow Y$ une application continue de X dans Y. Montrons que f(X) est un connexe de Y. Supposons donc qu'il existe une partition $\{U_1; U_2\}$ de f(X) en deux ouverts. Posons $V_1 = f^{-1}(U_1)$ et $V_2 = f^{-1}(U_2)$. Les deux ouverts U_1 et U_2 sont des éléments de la topologie induite sur f(X) et sont donc de la forme $U_1 = f(X) \cap O_1$ et $U_2 = f(X) \cap O_2$ où O_1 et O_2 sont des ouverts de O_2 . De plus, pour O_2 pour O_2 sont des sous ensembles ouverts dans O_2 où O_3 et O_4 et O_2 sont des ouverts de O_3 pour i=1,2, $f^{-1}(U_i) = f^{-1}(O_i) = V_i$. Comme O_3 est continue, on en déduit que les sous ensembles O_4 et O_4 sont des sous ensembles ouverts dans O_4 . De plus, par construction, leur réunion recouvre O_4 et leur intersection est vide. O_4 est donc une partition de O_4 en deux ouverts. Comme O_4 est connexe, l'un de ces deux ouverts est vide et l'autre égale à O_4 tout entier et donc que l'un des nos deux sous ensemble O_4 de O_4 et égale à O_4 tout entier et donc que l'un des nos deux sous ensemble O_4 et O_4 et O_4 est vide et l'autre égale à O_4 four entier et donc que l'un des nos deux sous ensemble O_4 et O_4 et O_4 et O_4 et O_4 et l'autre égale à O_4 four entier et donc que l'un des nos deux sous ensemble O_4 et O_4

Théorème des valeurs intermédiaires Si une application f est définie et continue sur un intervalle]a,b[de \mathbb{R} (où a et b sont des rééls quelconques pouvant être égales à respectivement $-\infty$ et $+\infty$), si de plus a' et b' sont des éléments de]a,b[tel que a'<b' alors pour tout $C \in [f(a'), f(b')]$, il existe $c \in [a', b']$ tel que f(c) = C.

Démonstration L'image d'un connexe par une application continue est connexe. Or, les intervalles de \mathbb{R} sont les sous ensembles connexes de \mathbb{R} . On en déduit donc que l'image de [a',b'] par f est un intervalle de \mathbb{R} . Tout élément de ce dernier possèdant un antécédent dans [a',b'], Le théorème est démontré.

4 Quelques critères de connexité

Proposition Si un sous ensemble U de X est connexe, il en est de même de son adhérence.

Démonstration Soit

$$f:\overline{U}\longrightarrow\{0,1\}$$

une application continue. (L'adhérence de U est munie de la topologie induite de celle de X et $\{0,1\}$ est muni de la topologie discrète). f est donc continue sur U. Mais U étant connexe, ceci implique que f est constante sur U. On peut par exemple supposer que f vaut 1 sur U. Soit x un élément de

$$\overline{U} \setminus U$$
.

Supposons que f(x)=0. Comme f est continue et que $\{0\}$ est un ouvert de $\{0,1\}$ muni de la topologie discrète, $f^{-1}(0)$ est un ouvert de l'adhérence de U contenant x. C'est donc, en particulier, un voisinage de x . Mais comme x est adhérent à U , ce voisinage intersecte nécessairement U, et donc, par construction de ce voisinage, U possède des points dont l'image par f est nulle. Ce qui est absurde, par hypothèse. Donc $f\equiv 1$ sur l'adhérence de U et cette adhérence est donc belle et bien connexe. Cqfd.

Proposition Soient $(U_i)_{i \in I}$ une famille de sous ensembles connexes de X tels $\bigcap_{i \in I} U_i \neq \emptyset$ Alors: $\bigcup_{i \in I} U_i$ est connexe.

Démonstration Notons U la réunion des $(U_i)_{i\in I}$ et supposons qu'il existe une application continue $f:U\longrightarrow\{0,1\}$. Soit $a\in X$ un point de l'intersection des $(U_i)_{i\in I}$. La restriction de f à U_i , i étant fixé dans I, est encore une application continue à valeurs dans $\{0,1\}$. Comme U_i est connexe, il s'en suit que f est constante sur U_i . On peut supposer, par exemple, que f vaut 0 sur U_i . On aura donc f(a)=0. i étant quelconque dans I, f est alors constante sur chaque $U_i, \forall i \in I$. Mais l'égalité f(a)=0 implique que f est nulle sur tout $U_i, \forall i \in I$ et donc que f est nulle sur U et donc constante sur U. Ce qui implique que U est connexe. Cqfd.

Définition Soit x un élément de X. On appelle **composante connexe de x** la réunion des sous ensembles connexes de X contenant x.

Proposition Soit x un élément de X.

- La composante connexe de x est le plus grand connexe de X contenant x.
- La composante connexe de x est une partie fermée de X.

Démonstration La première partie de la proposition est évidente, par définition de la composante connexe d'un point . La seconde partie s'en déduit aussitôt car, rappelonsle, si un ensemble est connexe il en est de même de son adhérence qui de plus est fermée . Donc si U est le plus grand connexe de X contenant x, il est nécessairement égale à son adhérence qui est aussi connexe et qui contient aussi x.

Proposition Soit $((X_i,d_i))_{i\in I}$ une famille d'espaces métriques connexes. Alors Z, l'espace produit des X_i est connexe pour la métrique produit.

Démonstration Soient O_1 et O_2 deux ouverts de Z non vides et partitionnants Z. Fixons $i \in I$ et notons Π_i le projecteur de Z sur X_i . On a: $X_i = \Pi_i(Z) = \Pi_i(O_1) \cup \Pi_i(O_2)$ et $\Pi_i(O_1) \cap \Pi_i(O_2) = \emptyset$. Les projecteurs étant des applications ouvertes , $\Pi_i(O_1)$ et $\Pi_i(O_2)$ sont des ouverts de X_i . Ils définissent donc une partition de X_i en deux ouverts disjoints. Mais X_i étant connexe, cela implique, par exemple, que $\Pi_i(O_1) = \emptyset$ et

 $\Pi_i(O_2) = X_i$. Cela implique par ailleurs que $O_1 = \emptyset$ et $O_2 = Z$ et que Z est connexe.

Réciproquement, les projecteurs Π_i étant continues sur Z pour la métrique produit et la topologie de X_i , si l'on suppose que Z est connexe, il en est de même de X_i .

Corollaire \mathbb{K} muni de l'une quelconque de ses normes est connexe comme produit de \mathbb{R} par lui même.

Corollaire \mathbb{R}^n muni de l'une quelconque de ses normes est connexe.

Définition Soient x et y deux éléments de X. On appelle **chemin d'extrémités x** et y (ou **chemin joignant x et y** de X toute application continue $c : [0,1] \longrightarrow X$ telle que c(0) = x et c(1) = y.

Définition On dira que (X, O) est **connexe par arc** si tout couple d'éléments de X peut être joint par un chemin.

Proposition Si X est connexe par arc alors X est connexe.

Démonstration Supposons donc que X n'est pas connexe. Soit alors $\{U,V\}$, une partition de X en deux fermés. Soient aussi x un élément de U et y un élément de V. Comme X est connexe par arc, il existe un chemin $c:[0,1] \longrightarrow X$ telle que c(0) = x et c(1) = y. Notons $A = \{t \in [0,1]/c(t) \in U\}$. Comme A est un sous ensemble majoré de \mathbb{R} , il possède une borne supérieur que l'on note t_0 . Notons, d'autre part, $B = \{t \in [0,1]/c(t) \in V\}$. B est un sous ensemble minoré de \mathbb{R} et possède, par conséquent, une borne inférieure que l'on note t_1 . On a nécessairent $t_0 = t_1$. Supposons que ce ne soit pas le cas, alors $t_0 < t_1$. On peut alors trouver un réél t élément de $[t_0,t_1]$. Mais l'élément $[t_0,t_1]$. Mais l'élément $[t_0,t_1]$. Mais l'élément $[t_0,t_1]$. Notons $[t_0,t_1]$ et $[t_0,t$

T étant la borne supérieure de A, on peut construire une suite $(t_n)_{n\in\mathbb{N}}$ d'éléments de A convergeante vers T. Mais U étant fermé et c continue , $\lim_{n\to\infty} c(t_n) = c(T)$ est élément de U. De même, on montrerait que c(T) est élément de V. Mais U et V ont été supposés disjoints. On aboutit alors à une contradiction et X est bien connexe.

Remarque Attention, la réciproque est fausse.