Problème I

Dans tout le problème, on considère la fonction numérique f de variable réelle définie par :

pour tout x réel,
$$f(x) = -x^2 + 2x + 1$$

et la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

 u_0 réel fixé et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

I. Etude de la fonction f

- №1. Etudier le sens de variation de la fonction f.
 - 2. Déterminer les deux racines de l'équation f(x) x = 0.
- Ces deux racines sont réelles et de signe contraire. On note ℓ_1 la racine négative et ℓ_2 la racine positive.
- 3. Montrer que, pour tout x réel :

si
$$x < \ell_1$$
 alors $f(x) < \ell_1$;
si $1 < x < 2$ alors $1 < f(x) < 2$.

- 4. Dresser le tableau de variation de la fonction f en faisant notamment figurer dans le tableau les valeurs de x égales à ℓ_1 , ℓ_2 , 1 et 2 ainsi que les valeurs correspondantes de f(x).
- 5. Tracer la courbe représentative de la fonction f, notée C_f , dans un repère orthonormal du φ plan d'unité graphique 2 cm.

Préciser les coordonnées des points d'intersection de la courbe C_f avec l'axe des abscisses.

- 6. Sur le même graphique, tracer la droite D d'équation y = x.
- Déterminer les coordonnées des points d'intersection de la courbe C_f et de la droite D ainsi que la position de C_f par rapport à D.

II. Etude de la suite $(u_n)_{n\in\mathbb{N}}$

- 1. Sur le graphique précédent représenter à l'aide de la courbe C_f et de la droite D les quatre premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$
 - a) lorsque $u_0 = -0.7$;
 - b) lorsque $u_0 = 1,25$.
- 2. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ a une limite finie λ , alors λ ne peut prendre que l'une des deux valeurs ℓ_1 ou ℓ_2 .
 - 3. Dans cette question, on suppose : $u_0 < \ell_1$
 - \nearrow 3.1. Démontrer que, pour tout entier naturel $n, u_n < \ell_1$.
 - 3.2. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante:
 - 3.3. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente ? Justifier la réponse.

4. Dans cette question, on suppose : $u_0 \in]1, \ell_2[$.

 \wedge 4.1. Démontrer que $\ell_2 < u_1 < 2$.

Dans les questions qui suivent, on note $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ les suites définies pour tout entier naturel n, par $v_n=u_{2n}$ et $w_n=u_{2n+1}$.

- otin 4.2. Prouver que, pour tout entier naturel n, $v_{n+1} = f \circ f(v_n)$ et $w_{n+1} = f \circ f(w_n)$.
 - 4.3. Démontrer que, pour tout entier naturel n,

$$1 < v_n < \ell_2 \text{ et } \ell_2 < w_n < 2.$$

- φ 4.4. Pour tout réel x, calculer f o f(x).
 - 4.5. Déterminer a et b réels tels que, pour tout réel x,

$$f \circ f(x) - x = (-x^2 + x + 1)(x^2 + ax + b).$$

- 4.6. Déterminer les valeurs du réel x telles que $f \circ f(x) x = 0$.
- \nearrow En déduire le signe de $f \circ f(x) x$ pour x appartenant à l'intervalle]1, 2[.
 - 4.7. En étudiant le signe de $v_{n+1} v_n$ pour n entier naturel, démontrer que la suite $(v_n)_{n \in \mathbb{N}}$ est décroissante.
 - Montrer par la même méthode que la suite $(w_n)_{n\in\mathbb{N}}$ est croissante.
 - 4.8. Prouver que les suites $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont convergentes et préciser la limite de chacune d'entre elles.
 - 4.9. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente ? Justifier la réponse.

Problème II

Le plan est muni d'un repère orthonormal (O ; \overrightarrow{i} , \overrightarrow{j}).

Etant donné un réel strictement positif p (p > 0), on désigne par \mathcal{D} la droite d'équation

 $y = -\frac{p}{2}$ et par F le point de coordonnées (0, $\frac{p}{2}$).

On considère l'ensemble des points M du plan équidistants du point F et de la droite \mathcal{D} c'est à dire tels que MF = MH où H est le projeté orthogonal de M sur la droite \mathcal{D} .

Par définition, cet ensemble est la parabole P de directrice D et de foyer F.

Pour répondre aux différentes questions, il est vivement conseillé de faire plusieurs schémas qui pourront servir de supports aux divers raisonnements.

Question préliminaire

On désigne par K le projeté orthogonal de F sur la droite \mathcal{D} .

Vérifier que O appartient à la parabole P et que O est le milieu du segment [FK].

O est appelé sommet de la parabole.

Partie I Etude de quelques propriétés de la parabole et de ses tangentes

- 1. Soit M un point du plan de coordonnées (x, y).
 - >> 1.1. Déterminer les coordonnées de H projeté orthogonal de M sur la droite

 Ø.
 - 1.2. Déterminer une équation de l'ensemble des points M du plan tels que :

$$MF^2 = MH^2$$

- 1.3. En déduire que la parabole \mathcal{P} de foyer F et de directrice \mathcal{D} a pour équation $y = \frac{1}{2p}x^2$ dans le repère $(O; \vec{i}, \vec{j})$.
- 2. En choisissant 2 cm pour unité graphique dans le plan, tracer la parabole \mathcal{P}_0 correspondant au cas $p = \frac{1}{2}$. On placera sur le graphique le foyer F_0 et la directrice \mathcal{D}_0 de la parabole.

On revient maintenant au cas général où p est un réel strictement positif quelconque.

- 3. Soient M_0 un point de la parabole \mathcal{P} d'abscisse x_0 et H_0 le projeté orthogonal de M_0 sur la droite \mathcal{D} .
 - 3.1. Déterminer une équation de la tangente \mathcal{T}_0 en M_0 à la parabole \mathcal{P} . Préciser la tangente au sommet de la parabole ; cette droite sera désignée par d.
 - 3.2. Montrer que la droite \mathcal{T}_0 est la médiatrice du segment [FH₀].

3.3. Soit T_0 le point d'intersection de la tangente \mathcal{T}_0 en M_0 à la parabole \mathcal{P} avec la droite \mathcal{D} .

Que représente la droite \mathcal{I}_0 pour l'angle $\overset{\frown}{\mathrm{H_0}\mathrm{T_0F}}$?

 \nearrow 3.4. Montrer que les droites (FT₀) et (FM₀) sont perpendiculaires.

3.5. Soit f_0 le projeté orthogonal de F sur la tangente ${\mathcal T}_0\,$ en M_0 à ${\mathcal P}\!.$

Montrer que f_0 est un point de la droite d.

4. Soient A et B deux points de la parabole $\mathcal P$ d'abscisses respectives a et b avec a < b. Les tangentes en A et B à la parabole $\mathcal P$ se coupent au point Q.

4.1. Déterminer les coordonnées des points A, B et Q.

4.2. On désigne par I le milieu du segment [AB] et par E le point d'intersection de la droite (IQ) avec la parabole \mathcal{P} .

Montrer que les droites (IQ) et $\mathcal D$ sont perpendiculaires.

Déterminer les coordonnées du point E ; vérifier que E est milieu du segment [IQ].

4.3. Montrer que la droite qui passe par les points α et β milieux respectifs des segments [AQ] et [BQ] est tangente en E à la parabole \mathcal{P} .

Partie II On s'intéresse dans cette partie à la construction « à la règle et au compas » des tangentes à la parabole Ψ issues d'un point donné du plan.

1. On appelle:

« intérieur de la parabole \mathcal{P} » l'ensemble des points M du plan de coordonnées (x, y) tels que $y > \frac{1}{2} x^2$,

« extérieur de la parabole \mathcal{P} » l'ensemble des points M du plan de coordonnées (x, y) tels que $y < \frac{1}{2p}x^2$.

Donner une condition nécessaire et suffisante portant sur les distances du point M au point F et du point M à la droite \mathcal{D} pour que ce point M appartienne à l'intérieur (respectivement à l'extérieur) de la parabole \mathcal{P} .

2. Soit M_0 un point de la parabole \mathcal{P} , H_0 le projeté orthogonal de M_0 sur la droite \mathcal{D} et \mathcal{T}_0 la tangente à la parabole \mathcal{P} au point M_0 .

2.1. Montrer que pour tout point N de la droite \mathcal{T}_0 , $NH_0 = NF$.

 \searrow 2.2. Montrer que tout point N de la droite \mathcal{T}_0 , distinct de M_0 , est extérieur à la parabole \mathcal{P} .

2.3. N désigne un point du plan.

Déterminer le nombre de tangentes à la parabole ${\cal P}$ passant par N selon la position de N dans le plan.

2.4. Dans le cas où il existe deux tangentes à la parabole $\mathcal P$ passant par le point N, déduire des questions précédentes une construction « à la règle et au compas » de ces tangentes.

Partie III On s'intéresse dans cette partie à la construction « à la règle et au compas » du ou des points d'intersection de la parabole \mathcal{P} de foyer F et de directrice \mathcal{D} avec une droite du plan, s'il(s) existe(nt).

Le point F et la droite \mathcal{D} étant donnés, on désigne par Δ une droite du plan.

- 1. Etude de deux cas particuliers
 - 1.1. Construire le (ou les) point(s) d'intersection de la droite Δ et de la parabole \mathcal{P} lorsque la droite Δ est perpendiculaire à la droite \mathcal{D} .
 - 1.2. Construire, s'ils existent, le (ou les) point(s) d'intersection de la droite Δ et de la parabole $\mathcal P$ lorsque la droite Δ est parallèle à la droite $\mathcal D$.
- 2. Prouver que la parabole \mathcal{P} est l'ensemble des centres des cercles passant par le point F et tangents à la droite \mathcal{D} .
- 3. Etude du cas général

On suppose que la droite Δ n'est ni parallèle, ni perpendiculaire à \mathcal{D} . On note T le point d'intersection de la droite \mathcal{D} et de la droite Δ .

3.1. Soient \mathscr{C} et \mathscr{C} 'deux cercles centrés sur la droite Δ et tangents à la droite \mathcal{D} . Montrer que le cercle \mathscr{C} 'est l'image du cercle \mathscr{C} par une homothétie de centre T.

On suppose dans les deux questions suivantes qu'il existe au moins un point M de la parabole P appartenant à la droite Δ .

- 3.2. Montrer que tout cercle centré sur la droite Δ et tangent à la droite $\mathcal D$ coupe la droite (TF) en au moins un point.
- 3.3. Proposer une construction « à la règle et au compas » du ou des points d'intersection de la droite Δ avec la parabole $\mathcal P$ lorsque ces points existent.

Partie IV On se propose dans cette partie de déterminer, par deux méthodes différentes, l'aire d'un « segment » de parabole c'est à dire l'aire de la partie de plan délimitée par un arc de parabole et la corde qui le sous-tend.

Dans cette partie, on considère toujours la parabole \mathcal{P} de directrice \mathcal{D} et de foyer F admettant dans le repère orthonormal (O; \overrightarrow{i} , \overrightarrow{j}) l'équation $y = \frac{1}{2n}x^2$.

A et B sont deux points de la parabole \mathcal{P} ; les tangentes en A et B à \mathcal{P} se coupent au point Q.

1. Méthode analytique

On note a et b les abscisses respectives des points A et B avec a < b.

- 1.1. Déterminer l'aire A du triangle ABQ.
- 1.2. Déterminer une équation de la droite (AB).
 - 1.3. Déterminer l'aire \mathcal{A} ' de la partie de plan délimitée par l'arc de parabole \widehat{AB} et la corde [AB] en fonction de \mathcal{A} .
 - 1.4. Quelle relation existe-t-il entre \mathcal{A} et \mathcal{A} ?

2. Méthode géométrique

Les résultats des questions 2.1. à 2.4. sont utilisés par Archimède dans son ouvrage sur la « quadrature du segment de parabole ».

I désigne le milieu du segment [AB], E l'intersection de la droite (IQ) avec la parabole \mathcal{P} ; α et β sont les milieux respectifs des segments [AQ] et [BQ].

On admet que tout point situé à l'intérieur ou sur les côtés du triangle AEB appartient à la partie de plan délimitée par l'arc de parabole \widehat{AB} et la corde [AB] qui le sous-tend et que tout point de cette partie du plan est situé à l'intérieur ou sur les côtés du triangle ABQ.

- 2.1. Montrer que E est le milieu du segment $[\alpha\beta]$.
- 2.2. Exprimer l'aire du triangle ABE en fonction de \mathcal{A} , aire du triangle ABQ et justifier l'inégalité suivante :

$$\frac{1}{2}\mathcal{A} \leq \mathcal{A}' \leq \mathcal{A}.$$

- 2.3. On désigne par K et K' les milieux respectifs des segments [AE] et [BE] et, par L et L', les points d'intersection de la parabole $\mathcal P$ respectivement avec les droites (αK) et $(\beta K')$.
- 2.3.1. Exprimer l'aire des triangles AEL et EBL' en fonction de \mathcal{A} , aire du triangle ABQ.
- 2.3.2. Exprimer l'aire du triangle $\alpha\beta Q$ à l'aide de \mathcal{A} .
- 2.3.3. Démontrer la double inégalité suivante :

$$\frac{1}{2}\mathcal{A}\left(1+\frac{1}{4}\right)\leq\mathcal{A}'\leq\mathcal{A}\left(1-\frac{1}{4}\right).$$

- 2.4. En itérant n fois (n entier naturel strictement positif) le procédé décrit précédemment, déterminer un encadrement de l'aire \mathcal{A} de la partie de plan délimitée par l'arc de parabole \widehat{AB} et la corde [AB] en fonction de \mathcal{A} .
- 2.5. Qu'obtient-on par passage à la limite ?
- 2.6. A quelle époque et où vivait Archimède ? Citer au moins un résultat scientifique et au moins une invention technologique attribués à Archimède .