FICHE: SUITES RÉELLES

4 techniques de calcul de limites

- Par factorisation par les termes dominants
- Par multiplication par la quantité conjuguée
- Par utilisation du théorème de la limite séquentielle et par usage des limites usuelles.
- En utilisant les équivalents.

Théorème d'opérations sur les limites

Soit (u_n) et (v_n) des suites convergeant respectivement vers l et l".

 $|u_n| \xrightarrow[n \to +\infty]{} |l|$

•

$$\forall \lambda, \mu \in \mathbb{R}, \quad \lambda u_n + \mu v_n \xrightarrow[n \to +\infty]{} \lambda l + \mu l'$$

•

$$u_n v_n \xrightarrow[n \to +\infty]{} ll'$$

• Si $l' \neq 0$, on peut supposer qu'à partir d'un certain rang N, les termes de la suite (v_n) sont non nuls. Alors la suite $(\frac{1}{n_n})_{n \geq N}$ est bien définie et de plus :

$$\boxed{\frac{1}{v_n} \xrightarrow[n \to +\infty]{} \frac{1}{l}}$$

$$\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{l} \frac{l}{l'}.$$

Théorème des gendarmes

On considère trois suites : (u_n) , (v_n) et (w_n) . On suppose que :

- (H1) $v_n \le u_n \le w_n$ à partir d'un certain rang.
- H2 Les deux suites encadrantes (v_n) et (w_n) convergent vers une même limite l alors la suite (u_n) converge vers l.

De même, si:

- (H1) $v_n \le u_n$ à partir d'un certain rang.
- (H2) $\lim v_n = +\infty$

alors $\lim u_n = +\infty$.

Critère de divergence d'une suite

Soit (u_n) une suite réelle. On suppose qu'il existe deux suites extraites $u_{\omega(n)}$ et $u_{\tilde{\omega}(n)}$ telles que :

- H1 $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} a \in \overline{\mathbb{R}}.$
- $(H2) \quad u_{\tilde{\varphi}(n)} \xrightarrow[n \to +\infty]{} \tilde{a} \in \mathbb{R}.$
- (H3) $a \neq \tilde{a}$

alors (u_n) est divergente.

Théorème de la limite monotone

Soit (u_n) une suite réelle. On suppose que :

- (H1) (u_n) est croissante.
- H2 Si (u_n) est majorée par un réel $A \in \mathbb{R}$

alors (u_n) converge vers une limite finie $l \in \mathbb{R}$ et $l \leq A$.

Suites adjacentes

Soient (u_n) et (v_n) deux suites réelles. On dit que (u_n) et (v_n) sont **adjacentes** lorsque :

- (u_n) est croissante
- (v_n) est décroissante
- $(H3) \quad v_n u_n \xrightarrow[n \to +\infty]{} 0$

Ces deux suites sont convergentes et convergent vers la même limite $l \in \mathbb{R}$. De plus :

 $\forall n \in \mathbb{N}, \quad u_n \le l \le v_n$

Théorème de la limite séquentielle

Soient $f: I \to \mathbb{R}$ et $a \in \overline{I}$. Soit une suite (u_n) de points de I. Soit $l \in \overline{I}$. On suppose que :

- $\underbrace{\text{H1}} \quad u_n \xrightarrow[n \to +\infty]{} a$
- $(H2) \quad f(x) \xrightarrow[x \to a]{} l$

alors $f(u_n) \xrightarrow[n \to +\infty]{} l$.

Convergence d'une suite géométrique

Soit (u_n) la suite géométrique de raison $a \in \mathbb{R}$ et de premier terme $1 : \forall n, u_n = a^n$.

$$a^{n} \xrightarrow[n \to +\infty]{ \text{diverge si } a \leq -1 \\ 0 \text{ si } a \in]-1,1[\\ 1 \text{ si } a = 1 \\ +\infty \text{ si } a > 1 }$$

Suites négligeable devant une autre

Définition : Soient (u_n) et (v_n) deux suites. On dit que (u_n) est **négligeable** devant (v_n) lorsqu'il existe une suite (ε_n) **convergent vers 0** et un rang $N \in \mathbb{N}$ tels que :

$$\forall n \ge N$$
 $u_n = \varepsilon_n v_n$

Si tel est le cas, on note :

$$u_n = \underset{n \to +\infty}{o} (v_n)$$

Proposition: Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors:

$$u_n = \mathop{o}_{n \to +\infty}(v_n) \quad \Longleftrightarrow \quad \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$$

Croissances comparées

Soient a > 1, $\alpha > 0$ et $\beta > 0$ alors :

$$(\ln n)^{\beta} = \underset{n \to +\infty}{o} (n^{\alpha})$$

$$n^{\alpha} = \underset{n \to +\infty}{o} (a^n)$$

$$a^n = \underset{n \to +\infty}{o}(n!)$$

$$n! = \underset{n \to +\infty}{o} (n^n)$$

Suites équivalentes

Définition : Soient (u_n) et (v_n) deux suites. On dit que (u_n) est **équivalente** à (v_n) lorsqu'il existe une suite (α_n) convergent vers 1 et un rang $N \in \mathbb{N}$ tels que :

$$\forall n \ge N$$
 $u_n = \alpha_n v_n$

Si tel est le cas, on note:

$$u_n \sim v_n$$

Proposition: Soient (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors:

$$u_n \underset{n \to +\infty}{\sim} v_n \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$$

Opérations sur les équivalents

— Soit (a_n) , (b_n) , (c_n) , (d_n) des suites telles que :

$$a_n \sim b_n$$
 et $c_n \sim d_n$

Alors:

$$a_n c_n \underset{n \to +\infty}{\sim} b_n d_n$$

Si de plus (c_n) et (d_n) ne s'annulent pas à partir d'un certain rang :

$$\frac{a_n}{c_n} \underset{n \to +\infty}{\sim} \frac{b_n}{d_n}$$

— Soit (u_n) et (v_n) deux suites et $\alpha \in \mathbb{R}$. Si les expressions u_n^{α} et v_n^{α} ont un sens à partir d'un certain rang, alors :

$$u_n \underset{n \to +\infty}{\sim} v_n \implies u_n^{\alpha} \underset{n \to +\infty}{\sim} v_n^{\alpha}$$

Par contre, il ne faut pas:

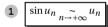
- Sommer des équivalents.
- Composer des équivalents. En particulier, il ne faut par :
 - Prendre des logarithmes d'équivalents.
 - Prendre des exponentielles d'équivalents.

Équivalents usuels

Soit (u_n) une suite telle que

$$u_n \xrightarrow[n \to +\infty]{} 0$$

alors:



 $\boxed{1 - \cos u_n} \underset{n \to +\infty}{\sim} \frac{u_n^2}{2}$

$$\left[(1+u_n)^{\alpha} - 1 \right] \underset{n \to +\infty}{\sim} \alpha u_n \quad (\alpha \in \mathbb{R}^*).$$

Suites définies par récurrence

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ et $a \in I$. On suppose que I est un intervalle stable par f. On considère la suite récurrente (u_n) construite par $\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) \end{cases}$

- Si f est croissante sur I alors (u_n) est monotone et :
 - 1. Si $u_0 \le f(u_0)$ alors (u_n) est croissante.
 - 2. Si $u_0 \ge f(u_0)$ alors (u_n) est décroissante.
- Si f est décroissante sur I alors (u_n) a ses deux sous suites (u_{2n}) et (u_{2n+1}) monotones et de sens contraire.