

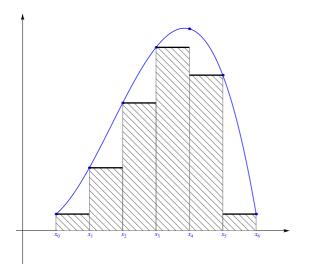
Intégration sur un segment des fonctions à valeurs réelles

Table des matières

6	Intég	gration sur un segment des fonctions à valeurs réelles	1
	16.1	Fonctions en escaliers	
		16.1.1 Subdivision d'un segment	3
		16.1.2 Fonctions en escaliers	3
		16.1.3 Intégrale d'une fonction en escaliers	4
		16.1.4 Propriétés de l'intégrale d'une fonction en escaliers	4
	16.2	Fonctions continues par morceaux	6
		16.2.1 Définition et propriétés	6
		16.2.2 Approximation des fonctions continues par morceaux par les fonctions en escalier	7
		16.2.3 Intégrale d'une fonction continue par morceaux	
		16.2.4 Propriétés de l'intégrale	
		16.2.5 Fonctions continues par morceaux sur un intervalle	10
		16.2.6 Nullité de l'intégrale d'une fonction continue	11
		16.2.7 Majorations fondamentales	
		16.2.8 Valeur moyenne d'une fonction	13
		16.2.9 Invariance de l'intégrale par translation	14
	16.3	Primitive et intégrale d'une fonction continue	14
	16.4	Calcul de primitives et d'intégrales	
		16.4.1 Intégration par parties	18
		16.4.2 Changement de variables	
		16.4.3 Changement de variable affine	
		16.4.4 Étude d'une fonction définie par une intégrale	20
	16.5	Formules de Taylor	
		16.5.1 Formule de Taylor avec reste intégral	
		16.5.2 Inégalité de Taylor-Lagrange	
		16.5.3 Formule de Taylor-Young	
		16.5.4 Utilisation des trois formules de Taylor	
	16.6	Méthode des rectangles, Sommes de Riemann	26

Pour bien aborder ce chapitre

Les mathématiciens se sont intéressés très tôt aux problèmes de calcul d'aires et de volumes. Ainsi Eudoxe de Cnide, mathématicien grec du 4^e siècle avant note ère, parvient à calculer le volume d'une pyramide. Cent ans plus tard, Archimède généralise son procédé et invente la méthode d'exhaustion. Il s'agit d'approcher l'aire ou le volume à déterminer par des aires ou des volumes élémentaires, par défaut et par excès. La notion de limite est alors encore bien loin d'être découverte et le calcul est généralement terminé par un raisonnement par l'absurde. La « révélation » est venue de Newton et de Leibniz lorsqu'ils inventèrent le calcul infinitésimal : l'opération d'intégration est une opération inverse de celle de la dérivation et, pour calculer une aire, il suffit de calculer une primitive. C'est « le théorème fondamental de l'analyse » 16.29 page 15. Il faudra attendre néanmoins le 19^e siècle pour que la notion d'intégrale soit bien formalisée grâce aux travaux de Cauchy et surtout à ceux de Riemann. Celui-ci s'intéresse à fonction f donnée sur un segment [a,b] et essaie d'approcher l'aire $\mathcal A$ sous le graphe de f par les aires Σ^- et Σ^+ de deux familles de rectangles qui approchent par défaut et par excès $\mathcal A$ comme dans les dessins ci-dessous.



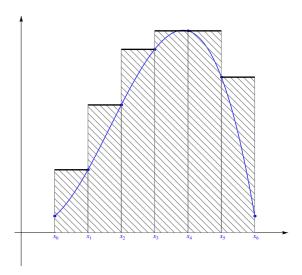


FIGURE 16.1 – Somme inférieure : Σ

ensilon

FIGURE 16.2 – Somme supérieure : Σ^+

Une fonction est intégrable au sens de Riemann si et seulement la différence des aires Σ^+ et Σ^- tend vers 0 quand le pas de la subdivision, c'est-à-dire la largeur des rectangles considérés, tend vers 0. La méthode d'exhaustion est sous-jacente à ce procédé.

Nous travaillerons dans ce chapitre sur une classe de fonctions beaucoup plus simples que celles étudiée dans l'intégrale de Riemann : les fonctions continues par morceaux. Ce sera amplement suffisant pour pourvoir traiter une large variété de problèmes. Vous généraliserez ces résultats en spé lors de l'étude des intégrales impropres à des fonctions pas forcément continues par morceaux.

En particulier, pour un segment [a,b] et une fonction $f:[a,b] \to \mathbb{R}^+$ positive, nous nous attacherons dans ce chapitre à répondre aux deux questions suivantes.

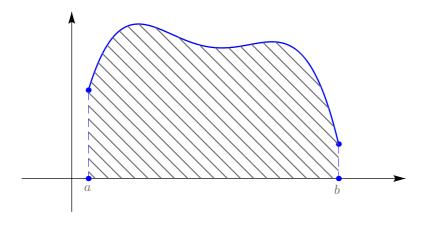


FIGURE 16.3 – Aire sous une courbe

Journe

1) Quelle condition imposée à f pour que l'aire délimitée par sa courbe dans un repère orthonormé soit bien définie?

2 Comment calculer cette aire?

16.1 Fonctions en escaliers

16.1.1 Subdivision d'un segment

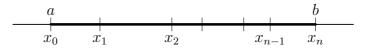


FIGURE 16.4 – Subdivision d'un segment

_segment

DÉFINITION 16.1 Subdivision d'un segment

On appelle *subdivision* du segment [a,b] toute famille $\tau = (x_k)_{1 \le k \le n}$ de réels tels que

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Le pas de la subdivision τ est donné par $\max_{i \in [0, n-1]} |x_{i+1} - x_i|$. Une subdivision de [a, b] est régulière si tous les $x_{i+1} - x_i$ sont égaux.

DÉFINITION 16.2 Subdivision plus fine qu'une autre

Considérons τ et τ' deux subdivisions d'un segment [a,b]. On dit que τ' est plus fine que τ si et seulement si tout élément de la famille τ est élément de la famille τ' .

Plus précisément, une subdivision est une famille. Une famille est une application. Il vaut mieux dire que l'image de τ est incluse dans l'image de τ'

Proposition 16.1

Soient τ et τ' deux subdivisions d'un segment [a, b]. Il existe une subdivision de [a, b] plus fine que τ et τ' .

Démonstration Il suffit de considérer la famille $\tau'' = (x_k)_{1 \le k \le N}$ dont les éléments sont ceux de τ et ceux de τ' ordonnés dans l'ordre croissant et où N est le cardinal de la famille ainsi construite. τ'' est plus fine que τ et τ' .

16.1.2 Fonctions en escaliers

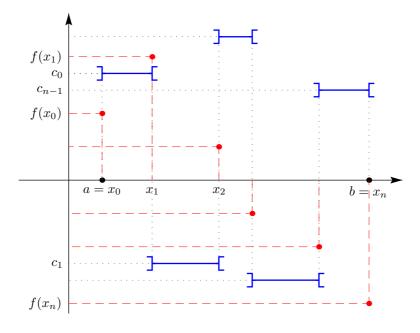


FIGURE 16.5 – Fonction en escalier

escalier

DÉFINITION 16.3 Fonction en escalier

— Une fonction φ : [a,b] → \mathbb{R} est *une fonction en escalier* sur le segment [a,b] s'il existe une subdivision τ : $a = x_0 < \cdots < x_n = b$ du segment [a,b] telle que φ est constante sur chaque intervalle] x_k , x_{k+1} [

$$\forall k \in [0, n-1], \quad \exists c_k \in \mathbb{R}, \quad \forall x \in [x_k, x_{k+1}], \quad \varphi(x) = c_k$$

- La subdivision τ est dite *subordonnée* à la fonction ϕ .
- On notera $\mathscr{E}([a,b],\mathbb{R})$ l'ensemble des fonctions en escalier sur [a,b] à valeurs réelles.

Remarque 16.1

- Si τ est une subdivision subordonnée à φ alors toute subdivision plus fine est encore subordonnée à φ .
- Une fonction constante est une fonction en escalier.

Proposition 16.2

Toute fonction $\varphi \in \mathcal{E}([a,b],\mathbb{R})$ est bornée sur [a,b].

Démonstration Soient φ une fonction en escalier et $\tau = x_0 < \cdots < x_n = b$ une subdivision qui lui est subordonnée. On a donc : $\forall k \in [0, n-1]$, $\exists c_k \in \mathbb{R}$, $\forall x \in]x_k, x_{k+1}[$, $\varphi(x) = c_k$. En posant $m = \max_{0 \le k \le n-1} |c_k|$ puis $M = \max(m, |f(x_0)|, \dots, |f(x_n)|)$, on a $\forall x \in [a,b], |\varphi(x)| \le M$.

Proposition 16.3

- L'ensemble des fonctions en escalier $\mathscr{E}([a,b],\mathbb{R})$ sur le segment [a,b] est un sous-espace vectoriel de l'espace des fonctions $(\mathscr{F}([a,b],\mathbb{R}),+,.)$.
- L'ensemble $\mathscr{E}([a,b],\mathbb{R})$ est aussi un sous-anneau de l'anneau des fonctions $(\mathscr{F}([a,b],\mathbb{R}),+,\times)$.

Démonstration La fonction constante égale à 0 sur [a,b] est élément de $\mathscr{E}([a,b],\mathbb{R})$. On montre facilement (en utilisant une subdivision plus fine que les deux subdivisions subordonnées aux deux fonctions) que $\mathscr{E}([a,b],\mathbb{R})$ est stable par combinaison linéaire. C'est donc un sous-espace vectoriel de $\mathscr{F}([a,b],\mathbb{R})$. On montre de même qu'un produit de fonctions en escalier est encore une fonction en escalier, ce qui prouve que $\mathscr{E}([a,b],\mathbb{R})$ est un sous-anneau de $\mathscr{F}([a,b],\mathbb{R})$.

16.1.3 Intégrale d'une fonction en escaliers

DÉFINITION 16.4 Intégrale d'une fonction en escaliers

Supposons que a < b. Soit une fonction en escalier $\varphi \in \mathscr{E}([a,b],\mathbb{R})$ et $\tau : a = x_0 < \cdots < x_n = b$ une subdivision subordonnée à φ . Soient $c_0, \ldots, c_{n-1} \in \mathbb{R}$ tels que : $\forall k \in [0, n-1] \quad \forall x \in]x_k, x_{k+1}[\quad \varphi(x) = c_k$. On définit l'*intégrale* de la fonction en escalier φ entre a et b comme étant le nombre réel

$$\int_{[a,b]} \varphi = \sum_{k=0}^{n-1} c_k (x_{k+1} - x_k).$$

Ce nombre ne dépend pas du choix de la subdivision τ subordonnée à φ.

Démonstration Prouvons que cette définition ne dépend pas de la subdivision choisie. Soient τ_1 et τ_2 deux subdivisions subordonnées à φ . Notons I_{τ} l'intégrale calculée avec la formule donnée dans la proposition pour une subdivision τ de [a,b].

• Supposons que τ_1 est plus fine que τ_2 . Si τ_1 et τ_2 ne diffèrent qu'en un point, $\tau_2 = a = x_0 < x_1 < \ldots < x_i < x_{i+1} < \ldots < x_n = b$ et $\tau_1 = a = x_0 < x_1 < \ldots < x_i < \alpha < x_{i+1} < \ldots < x_n = b$. On $a: \phi_{|]x_i, x_{i+1}[} = c_i$ par conséquent $\phi_{|]x_i, \alpha[} = c_i$, $\phi_{|]\alpha, x_{i+1}[} = c_i$ et

$$I_{\tau_{1}} = c_{0} (x_{1} - x_{0}) + c_{1} (x_{2} - x_{1}) + \dots + c_{i-1} (x_{i} - x_{i-1}) + \underbrace{c_{i} (\alpha - x_{i}) + c_{i} (x_{i+1} - \alpha)}_{= c_{i}(x_{i+1} - x_{i})} + c_{i+1} (x_{i+2} - x_{i+1}) + \underbrace{c_{i} (\alpha - x_{i}) + c_{i} (x_{i+1} - x_{i})}_{= c_{i}(x_{i-1} - x_{i})} = I_{\tau_{2}}$$

Le cas où τ_1 et τ_2 ne diffèrent que d'un nombre fini de points se traite de même.

Étudions maintenant le cas général. Considérons la subdivision τ = τ₁ ∪ τ₂ qui est plus fine que τ₁ et τ₂. En appliquant le point précédent, on a I_τ = I_{τ1} et I_τ = I_{τ2} et par conséquent I_{τ1} = I_{τ2}.

16.1.4 Propriétés de l'intégrale d'une fonction en escaliers

PROPOSITION 16.4 L'intégrale est une forme linéaire sur $\mathscr{E}([a,b],\mathbb{R})$

Soient $\varphi_1, \varphi_2 \in \mathscr{E}([a, b], \mathbb{R})$ deux fonctions en escalier sur le segment [a, b]. Pour tout $\alpha, \beta \in \mathbb{R}$, on a

$$\int_{[a,b]} \alpha \varphi_1 + \beta \varphi_2 = \alpha \int_{[a,b]} \varphi_1 + \beta \int_{[a,b]} \varphi_2$$

Autrement dit, si

$$\theta : \left\{ \begin{array}{ccc} \mathscr{E}([a,b],\mathbb{R}) & \longrightarrow & \mathbb{R} \\ \varphi & \longmapsto & \int_{[a,b]} \varphi \end{array} \right.$$

alors on a

$$\theta(\alpha\varphi_1 + \beta\varphi_2) = \alpha\theta(\varphi_1) + \beta\theta(\varphi_2)$$

On dit aussi que θ est une *forme linéaire* sur $\mathscr{E}([a,b],\mathbb{R})$.

Démonstration Soient τ_1 une subdivision subordonnée à ϕ_1 et τ_2 une subdivision subordonnée à ϕ_2 . Soit τ une subdivision plus fine que τ_1 et τ_2 . Elle est donc subordonnée à la fois à ϕ_1 et à ϕ_2 . Supposons que τ : $a = x_0 < x_1 < ... < x_n = b$ et que

$$\forall i \in [0, n-1], \quad \varphi_{1||X_i, X_{i+1}|} = c_i \quad \text{et} \quad \varphi_{2||X_i, X_{i+1}|} = d_i.$$

On a alors

$$\int_{[a,b]} \alpha \varphi_1 + \beta \varphi_2 = \sum_{i=0}^{n-1} (\alpha c_i + \beta d_i) (x_{i+1} - x_i)$$

$$= \alpha \sum_{i=0}^{n-1} c_i (x_{i+1} - x_i) + \beta \sum_{i=0}^{n-1} d_i (x_{i+1} - x_i)$$

$$= \alpha \int_{[a,b]} \varphi_1 + \beta \int_{[a,b]} \varphi_2$$

PROPOSITION 16.5 L'intégrale d'une fonction en escalier positive est positive

Soit $\varphi \in \mathscr{E}([a,b],\mathbb{R})$ une fonction en escalier sur le segment [a,b]. Si φ est positive sur [a,b] alors $\overline{\int_{[a,b]}} \varphi \ge 0$.

Démonstration Soit $\tau: a = x_0 < x_1 < \ldots < x_n = b$ une subdivision subordonnée à $\phi: \forall i \in [0, n-1]$, $\phi_{1|]x_i, x_{i+1}[} = c_i \in \mathbb{R}$. Comme ϕ est positive, pour tout $i \in [0, n-1]$, on a $c_i \ge 0$. Par conséquent, $\int_{[a,b]} \phi = \sum_{i=0}^{n-1} c_i \left(x_{i+1} - x_i \right) \ge 0$.

COROLLAIRE 16.6

Soit $(\varphi_1, \varphi_2) \in (\mathscr{E}([a, b], \mathbb{R}))^2$. On a

$$\varphi_1 \leqslant \varphi_2 \implies \int_{[a,b]} \varphi_1 \leqslant \int_{[a,b]} \varphi_2$$

escalier

Démonstration Il suffit d'appliquer le résultat précédent à la fonction en escalier $\phi = \phi_2 - \phi_1$ et d'utiliser la linéarité de l'intégrale.

PROPOSITION 16.7 Relation de Chasles

Soit φ une fonction en escalier sur le segment [a, b] et $c \in [a, b]$. Alors

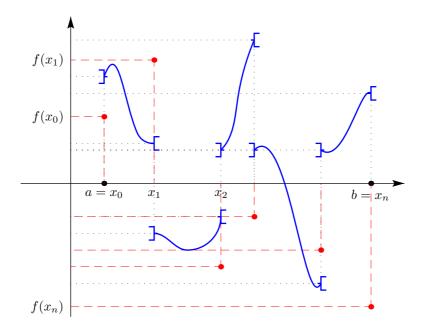
$$\int_{[a,b]} \varphi = \int_{[a,c]} \varphi + \int_{[c,b]} \varphi$$

Démonstration Soit τ : $a = x_0 < x_1 < ... < x_n = b$ une subdivision subordonnée à φ. On peut supposer, quitte à considérer la subdivision $\tau' = \tau \cup \{c\}$ qui est plus fine que τ que c est un point de τ . On suppose de plus que c est le m-ième élément de τ . Si pour tout $i \in [0, n-1]$, $\phi_{1||x_i,x_{i+1}|} = c_i$ alors

$$\int_{[a,b]} \varphi = \sum_{i=0}^{n-1} c_i (x_{i+1} - x_i)$$

$$= \sum_{i=0}^{m-1} c_i (x_{i+1} - x_i) + \sum_{i=m}^{n-1} c_i (x_{i+1} - x_i)$$

$$= \int_{[a,c]} \varphi + \int_{[c,b]} \varphi$$



norceaux

FIGURE 16.6 – Fonction continue par morceaux

16.2 Fonctions continues par morceaux

16.2.1 Définition et propriétés

DÉFINITION 16.5 Fonction continue par morceaux sur un segment

- Soit [a, b] un segment. On dit qu'une fonction φ : [a, b] → \mathbb{R} est une fonction continue par morceaux sur [a, b] lorsqu'il existe une subdivision τ : $a = x_0 < \cdots < x_n = b$ du segment [a, b] telle que
 - 1. Pour tout $k \in [0, n-1]$, la restriction de φ à $]x_k, x_{k+1}[$ est continue.
 - 2. Pour tout $k \in [0, n-1]$, φ restreinte à $]x_k, x_{k+1}[$ admet une limite finie strictement à droite en x_k et strictement à gauche en x_{k+1} . Autrement dit, la restriction de φ à $]x_k, x_{k+1}[$ est prolongeable par continuité sur $[x_k, x_{k+1}]$.
- Une telle subdivision est dite adaptée ou subordonnée à φ.

Remarque 16.2

- Toute fonction en escalier sur [a, b] est continue par morceaux sur [a, b].
- Comme pour les fonctions en escaliers, si τ est une subdivision de [a, b] subordonnée à φ continue par morceaux sur [a, b] et si τ' est une autre subdivision de φ de [a, b] plus fine que τ alors τ' est aussi subordonnée à φ .

Proposition 16.8

Si φ est une fonction continue par morceaux sur un segment [a,b] alors φ est bornée sur [a,b].

Démonstration Soit φ une fonction continue par morceaux sur [a,b] et soit $\tau: a=x_0 < \ldots < x_n=b$ une subdivision subordonnée à φ. Pour tout $i \in [0,n-1]$, la fonction $f_{|]x_i,x_{i+1}[}$ est continue et se prolonge en une fonction \tilde{f}_i continue sur le segment $[x_i,x_{i+1}]$. En appliquant le théorème ??, \tilde{f}_i est bornée sur le segment $[x_i,x_{i+1}]$. Posons $M=\max_{i\in[0,n-1]}\{M_i,|f(x_i)|\}\cup\{|f(b)|\}$. Alors $\forall x\in[a,b],|f(x)|\leq M$.

Proposition 16.9

Soit I un intervalle.

- L'ensemble des fonctions réelles continues par morceaux sur [a,b] est un sous-espace vectoriel de $(\mathscr{F}([a,b],\mathbb{R}),+,.)$.
- L'ensemble des fonctions réelles continues par morceaux sur [a, b] est un sous-anneau de $(\mathcal{F}([a, b], \mathbb{R}), +, \times)$.

Démonstration Montrons le premier point, le second se prouve de même. Il est tout d'abord clair que l'ensemble des fonctions réelles continues par morceaux sur [a,b] est non vide. Soient α , β deux scalaires réels et soient ϕ_1 et ϕ_2 deux fonctions continues par morceaux sur [a,b]. Soient τ_1 une subdivision de [a,b] subordonnée à ϕ_1 et soit τ_2 une subdivision de [a,b] subordonnée à ϕ_2 .

Soit τ : $a = x_0 < ... < x_n = b$ une subdivision plus fine que ϕ_1 et ϕ_2 . τ est donc subordonnée à la fois à ϕ_1 et à ϕ_2 . De plus, pour tout $i \in [0, n-1]$, $(\alpha \phi_1 + \beta \phi_2)_{|]x_i, x_{i+1}[} = \alpha \phi_1_{|]x_i, x_{i+1}[} + \beta \phi_2_{|]x_i, x_{i+1}[}$ qui est continue sur $]x_i, x_{i+1}[$ comme combinaison linéaire d'applications continues sur $]x_i, x_{i+1}[$. De plus, par opérations sur les limites, $(\alpha \phi_1 + \beta \phi_2)_{|]x_i, x_{i+1}[}$ admet une limite stricte à droite de x_i et une limite stricte à gauche de x_{i+1} . $\alpha \phi_1 + \beta \phi_2$ est donc bien une fonction continue par morceaux sur [a, b].

16.2.2 Approximation des fonctions continues par morceaux par les fonctions en escalier

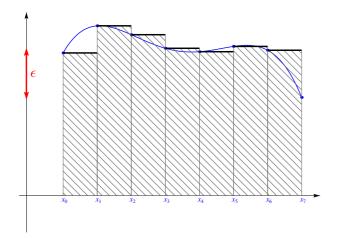
THÉORÈME 16.10 ★ Approximation d'une fonction continue par une fonction en escalier

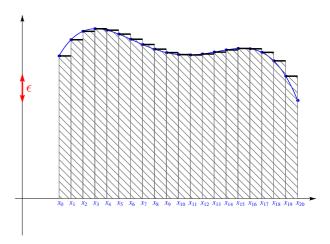
Soit f une fonction continue sur le segment [a, b] et $\varepsilon > 0$. Alors, il existe une fonction en escalier φ telle que

$$||f - \varphi||_{\infty} = \sup_{x \in [a,b]} |f(x) - \varphi(x)| \le \varepsilon.$$

729200441

Multimédia : animation, n augmente et les aires des rectangles sous le graphe de f se rapprochent de l'intégrale





a

FIGURE 16.7 – Une approximation grossière avec ε assez grand

procédé sur $[x_1, x_2]$... pour définir les fonctions g et ψ sur [a, b].

FIGURE 16.8 – Une approximation plus fine avec ε plus petit

_epsilon

LEMME 16.11 Une fonction continue par morceaux est la somme d'une fonction continue et d'une fonction en escalier

Soit f une fonction continue par morceaux sur le segment [a,b]. Il existe une fonction g continue sur [a,b] et une fonction g en escalier sur [a,b] telles que g = g + g.

729201155

Démonstration Considérons une subdivision $a = x_0 < \cdots < x_n = b$ subordonnée à la fonction en escalier f. Comme f est continue par morceaux, sa restriction à $]x_0, x_1[$ possède une limite finie à droite en x_0 et une limite finie à gauche en $x_1, f(x) \xrightarrow[x \to x_0^+]{} l$ et $f(x) \xrightarrow[x \to x_1^-]{} L$. Posons $\forall x \in]x_0, x_1[$, g(x) = f(x), $g(x_0) = l$ et $g(x_1) = L$ et $g(x_0) = f(x_0) = l$, $g(x_0) = l$ et $g(x_0$

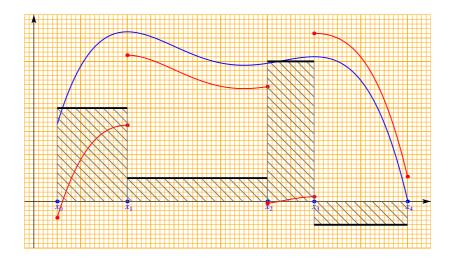
29201306

COROLLAIRE 16.12 **Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier** Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. Il existe une fonction φ en escalier sur [a,b] telle que $||f - \varphi||_{\infty} \le \varepsilon$.

729201125

Démonstration D'après le lemme précédent, il existe une fonction g continue sur [a,b] et une fonction ψ en escalier sur [a,b] telles que $f=g+\psi$. D'après le théorème précédent, il existe une fonction en escalier χ sur [a,b] telle que $\|g-\chi\|_{\infty} \le \varepsilon$. Posons alors $\varphi=\psi+\chi$. C'est une fonction en escalier et on a bien $\|f-\psi\|_{\infty}=\|g-\chi\|_{\infty} \le \varepsilon$.

729201925



ecoliare

FIGURE 16.9 – Toute fonction continue par morceaux est somme d'une fonction continue et d'une fonction en escaliers.

COROLLAIRE 16.13 Encadrement d'une fonction continue par morceaux par deux fonctions en escalier

Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. Il existe deux fonctions en escalier, $\varphi, \psi \in \mathscr{E}([a,b],\mathbb{R})$ vérifiant

 $\varphi \leqslant f \leqslant \psi$

et ψ

escalier

Démonstration D'après le corollaire 16.12, il existe une fonction en escalier χ sur [a,b] vérifiant $\forall x \in [a,b]$, $-\epsilon/2 \le f(x) - \chi(x) \le \epsilon/2$. Définissons les fonctions en escalier $\phi = \chi - \epsilon/2$ et $\psi = \chi + \epsilon/2$. Elles vérifient bien $\phi \le f \le \psi$ et $\psi - \phi = \epsilon$.

16.2.3 Intégrale d'une fonction continue par morceaux

PROPOSITION 16.14 Intégrale de Riemann d'une fonction continue par morceaux

Soit une fonction f continue par morceaux sur un segment [a, b]. On considère les ensembles

$$\mathscr{I}_{\leq f} = \left\{ \int_{[a,b]} \varphi \mid \varphi \text{ est en escalier sur } [a,b] \text{ et } \varphi \leq f \right\}$$

$$\mathscr{I}_{>f} = \left\{ \int_{[a,b]} \varphi \mid \varphi \text{ est en escalier sur } [a,b] \text{ et } f \leq \varphi \right\}$$

On a les propriétés suivantes,

- $\mathcal{I}_{< f}$ admet une borne supérieure.
- $\mathscr{I}_{>f}$ admet une borne inférieure.
- $\sup \mathcal{I}_{< f} = \inf \mathcal{I}_{> f}$.

On définit alors l'intégrale de Riemann de la fonction continue par morceaux f sur [a,b] par

$$\int_{[a,b]} f = \sup \mathscr{I}_{< f} = \inf \mathscr{I}_{> f}$$

Démonstration On définit les ensembles $\mathscr{E}_{< f}$ et $\mathscr{E}_{> f}$ par

 $\mathcal{E}_{< f} = \{ \varphi \text{ est en escalier sur } [a, b] \text{ et } \varphi \leq f \}$

et

$$\mathcal{E}_{>f} = \{ \varphi \text{ est en escalier sur } [a, b] \text{ et } f \leq \varphi \}$$

- On a prouvé que si f est une fonction continue par morceaux sur [a, b] alors elle est minorée par un réel m et majorée par un réel M sur [a, b]. Par conséquent, les fonctions en escalier sur [a, b] définies par x → m et x → M sont éléments respectivement de ℰ_{<f} et de ℰ_{>f}. ℰ_{<f} et ℰ_{>f} sont donc non vides.
- respectivement de $\mathscr{E}_{< f}$ et de $\mathscr{E}_{> f}$. $\mathscr{E}_{< f}$ et $\mathscr{E}_{> f}$ sont donc non vides. • Montrons que $\mathscr{I}_{< f}$ est majorée. Soit $\varphi \in \mathscr{E}_{< f}$. On a $\varphi \in f \in M$. Par conséquent, $\int_{[a,b]} \varphi \in \int_{[a,b]} M = M(b-a)$. Cette majoration étant valable pour toute fonction en escalier $\varphi \in \mathscr{E}_{< f}$, on en déduit que $\mathscr{I}_{< f}$ est majorée.

- D'après l'axiome de la borne supérieure, on en déduit que $\mathscr{I}_{< f}$ possède une borne supérieure β .
- De même, on prouve que $\mathscr{I}_{>f}$ est non vide minorée et possède une borne inférieure α .
- On a α ≤ β. Montrons que α = β. Soit ε > 0. Appliquant le théorème précédent, il existe des fonctions en escalier φ et ψ définies sur [a, b] telles que

$$\varphi \leq f \leq \psi$$
 et $\psi - \varphi \leq \varepsilon$

On a donc : $\varphi \in \mathcal{E}_{\leq f}$ et $\psi \in \mathcal{E}_{\geq f}$ ce qui donne

$$\int_{[a,b]} \varphi \leq \alpha \leq \beta \leq \int_{[a,b]} \psi$$

ce qui s'écrit aussi :

$$\beta - \alpha \leq \int_{[a,b]} \psi - \int_{[a,b]} \varphi = \int_{[a,b]} \psi - \varphi \leq \varepsilon (b-a)$$

Cette inégalité étant valable pour tout $\epsilon > 0$, on en déduit que : $\alpha = \beta$.

Remarque 16.3 Cette définition généralise la définition de l'intégrale d'une fonction en escalier. Si f est une fonction en escalier, son intégrale de Riemann est égale à l'intégrale de la fonction en escalier précédemment définie.

PLAN 16.1 : Pour montrer qu'une fonction f est intégrable sur un segment

Il suffit de montrer que f est continue par morceaux sur ce segment.

BIO 1 Bernhard Riemann, né le 17 septembre 1826 à Breselenz(Allemagne), mort le 20 juillet 1866 à Selasca, Italie

Mathématicien Allemand. Bernhard Riemann est le deuxième enfant d'une famille de six. Il reçoit de son père, pauvre pasteur luthérien, une éducation stricte et rigoureuse. Bien que très tôt il montre des talents intellectuels exceptionnels, il souffre d'une grande timidité, de dépression nerveuse et hypocondrie. Ses problèmes d'expression le poursuivront toute sa vie et l'empêcheront d'être reconnu à sa juste valeur de son vivant. Á 19 ans, il s'établit à Hanovre pour étudier la théologie et la philosophie, mais ses goût s'orientent vite vers les mathématiques. Il rencontre Gauss à l'université de Göttingen qui sera son directeur de thèse. Celle-ci porte sur les fonctions complexes et il y introduit les surfaces qui portent maintenant son nom et qui sont d'une grande importance dans la recherche mathématique actuelle. Quelques années plus tard, il jette les bases de la géométrie différentielle. C'est aussi lui qui a finalisé le travail de Cauchy sur les fonctions intégrables et qui a, le premier, produit une théorie rigoureuse de l'intégration. Il est le découvreur de la fonction ζ qui est au carrefour de nombreuses théories mathématiques modernes. La position des zéros de cette fonction est l'objet d'une célèbre conjecture qui n'a toujours pas été prouvée et qui permettrait de

mieux comprendre la répartition des nombres premiers. Bernhard Riemann est mort à 40 ans de la tuberculose.

16.2.4 Propriétés de l'intégrale

PROPOSITION 16.15 L'intégrale est une forme linéaire sur l'espace vectoriel des fonctions continues par morceaux

Soient f et g deux fonctions continues par morceaux sur le segment [a, b] et $\alpha, \beta \in \mathbb{R}$. Alors

$$\int_{[a,b]} (\alpha f + \beta g) = \alpha \int_{[a,b]} f + \beta \int_{[a,b]} g$$

Démonstration Comme f et g sont des fonctions continues par morceaux sur le segment [a,b], il en est de même de $\alpha f + \beta g$ et cette fonction est donc intégrable sur le segment [a,b]. Posons $I = \int_{[a,b]} \alpha f + \beta g$, $I_1 = \int_{[a,b]} f$ et $I_2 = \int_{[a,b]} g$. On veut donc prouver que $I = \alpha I_1 + \beta I_2$, ce qui revient à montrer que pour tout $\varepsilon > 0$, on $a - \varepsilon \le I - (\alpha I_1 + \beta I_2) \le \varepsilon$. Soit $\varepsilon > 0$. D'après le théorème 16.13, il existe des fonctions en escalier $\phi_1, \phi_2, \psi_1, \psi_2$ définies sur [a,b] telles que

$$\varphi_1 \le f \le \psi_1$$
, $\psi_1 - \varphi_1 \le \varepsilon$ et $\varphi_2 \le g \le \psi_2$, $\psi_2 - \varphi_2 \le \varepsilon$

On a donc

$$\alpha \varphi_1 + \beta \varphi_2 \le \alpha f + \beta g \le \alpha \psi_1 + \beta \psi_2$$
 et $\alpha \psi_1 + \beta \psi_2 - (\alpha \varphi_1 + \beta \varphi_2) \le \varepsilon$

Il vient alors

$$\int_{[a,b]} \alpha \phi_1 + \beta \phi_2 - \alpha \int_{[a,b]} \psi_1 - \beta \int_{[a,b]} \psi_2 \leq I - \left(\alpha I_1 + \beta I_2\right) \leq \int_{[a,b]} \alpha \psi_1 + \beta \psi_2 - \alpha \int_{[a,b]} \phi_1 - \beta \int_{[a,b]} \phi_2$$
 donc
$$\int_{[a,b]} \alpha \left(\phi_1 - \psi_1\right) + \beta \left(\phi_2 - \psi_2\right) \leq I - \left(\alpha I_1 + \beta I_2\right) \leq \int_{[a,b]} \alpha \left(\psi_1 - \phi_1\right) + \beta \left(\psi_2 - \phi_2\right)$$
 par linéarité de l'intégrale des fonctions en escalier donc
$$\int_{[a,b]} -\epsilon \left(\alpha + \beta\right) \leq I - \left(\alpha I_1 + \beta I_2\right) \leq \int_{[a,b]} \epsilon \left(\alpha + \beta\right)$$
 car $\psi_1 - \phi_1 \leq \epsilon$ et $\psi_2 - \phi_2 \leq \epsilon$ et par application du théorème 16.6 donc
$$-\epsilon \left(\alpha + \beta\right) (b - a) \leq I - \left(\alpha I_1 + \beta I_2\right) \leq \epsilon \left(\alpha + \beta\right) (b - a)$$

ce qui prouve le théorème.

PROPOSITION 16.16 L'intégrale d'une fonction continue par morceaux positive est positive

Soit φ une fonction continue par morceaux sur le segment [a, b]. On a

$$\forall x \in [a, b], \quad \varphi(x) \ge 0 \implies \int_{[a, b]} \varphi \ge 0$$

Démonstration La fonction nulle sur [a,b] est en escalier et vérifie $0 \le f$. Elle est donc élément de $\mathcal{E}_{\le f}$ et par définition de l'intégrale d'une fonction continue par morceaux, on a $\int_{[a,b]} f \ge \int_{[a,b]} 0 = 0$.

COROLLAIRE 16.17

Soient φ_1 et φ_2 deux fonctions continues par morceaux sur le segment [a, b]. On a

$$\varphi_1 \leqslant \varphi_2 \implies \int_{[a,b]} \varphi_1 \leqslant \int_{[a,b]} \varphi_2$$

tions int

Démonstration En appliquant le théorème précédent à la fonction positive g - f, on obtient $\int_{[a,b]} g - f \ge 0$ et on conclut en utilisant la linéarité de l'intégrale d'une fonction continue par morceaux.

PROPOSITION 16.18 Relation de Chasles

Soit φ une fonction continue par morceaux sur le segment [a, b]. Soit $c \in]a, b[$. Alors:

$$\int_{[a,b]} \varphi = \int_{[a,c]} \varphi + \int_{[c,b]} \varphi$$

chasles1

Démonstration Soit $\varphi \in \mathscr{E}_{< f}$. On a $\varphi_{|[a,c]} \leq f_{|[a,c]}$ et $\varphi_{|[c,b]} \leq f_{|[c,b]}$. Par conséquent,

$$\int_{[a,b]} \varphi = \int_{[a,c]} \varphi + \int_{[c,a]} \varphi \text{ par application de la relation de Chasles pour les fonctions en escalier}$$

$$\leq \int_{[a,c]} f + \int_{[c,a]} f \text{ par application du théorème 16.17}$$

Notons γ cette dernière quantité. γ est donc un majorant de $\mathscr{I}_{< f} = \left\{ \int_{[a,b]} \varphi \mid \varphi \in \mathscr{E}_{< f} \right\}$. Par conséquent, $\gamma \geqslant \int_{[a,b]} f$. On peut faire le même raisonnement avec une fonction $\varphi \in \mathscr{E}_{> f}$ et on aura alors $\gamma \leqslant \int_{[a,b]} f$. Donc $\gamma = \int_{[a,b]} f$ et la relation de Chasles est démontrée.

16.2.5 Fonctions continues par morceaux sur un intervalle

I désigne ici un intervalle de \mathbb{R} .

DÉFINITION 16.6 Fonction continue par morceaux sur un intervalle

On dit qu'une fonction définie sur un intervalle I est *continue par morceaux* sur I si et seulement si elle est continue par morceaux sur tout segment de I.

Notation 16.1 Soit f une fonction continue par morceaux sur I. Soit $(a, b) \in I^2$. On note — Si $a \le b$, $\int_a^b f(x) dx = \int_{[a,b]} f$

- Si
$$b \le a$$
, $\int_{a}^{b} f(x) dx = -\int_{[a,b]} f(x) dx$

— Si
$$a = b$$
, $\int_{a}^{b} f(x) dx = 0$

Remarque 16.4 Dans cette notation (comme dans les calculs de sommes), la variable x est muette, on a défini l'intégrale d'une fonction. $\int_a^b f(x) dx = \int_a^b f(t) dt = \dots$

PROPOSITION 16.19 Relation de Chasles

Soit une fonction f continue par morceaux sur l'intervalle I et trois réels $a, b, c \in I$. Alors

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Démonstration

• Si a < c < b, par application du théorème 16.18,

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f = \int_{[a,b]} f + \int_{[c,b]} f = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

• Si a < b < c, par application du point précéden

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{c} f(x) dx - \int_{b}^{c} f(x) dx = \int_{a}^{b} f(x) dx$$

• Les autres cas se démontrent de même.

16.2.6 Nullité de l'intégrale d'une fonction continue

THÉORÈME 16.20 ★★★ Si l'intégrale d'une fonction continue positive est nulle alors cette fonction est nulle Soient [a, b] un segment et une fonction f: [a, b] $\rightarrow \mathbb{R}$ vérifiant

la fonction f est continue sur le segment [a, b],

elle est positive : $\forall x \in [a, b], f(x) \ge 0$. H2

son intégrale est nulle : $\int_a^b f(x) dx = 0$.

Alors la fonction est nulle : $\forall x \in [a, b], \quad f(x) = 0$

Démonstration Par l'absurde, supposons que la fonction f n'est pas nulle. Alors il existe $c \in [a,b]$ tel que $f(c) \neq 0$. Pour simplifier la rédaction, supposons que $c \in [a, b]$ et f(c) > 0 (les autres cas se traitent de la même façon). Posons $\varepsilon = f(c)/2$. Puisque la fonction f est continue au point c, on peut trouver un voisinage $|c-\eta,c+\eta|$ de c avec $\eta > 0$ inclus dans [a,b] tel que $\forall x \in [c-\eta,c+\eta]$, $-\varepsilon \le f(x) - f(c) \le \varepsilon$ c'est-à-dire $\forall x \in]c - \eta, c + \eta[f(x) \ge \varepsilon]$. On a donc par la relation de Chasles,

$$\int_{a}^{b} f(x) dx = \int_{a}^{c-\eta} f(x) dx + \int_{c-\eta}^{c+\eta} f(x) dx + \int_{c+\eta}^{b} f(x) dx$$

$$\geq \int_{c-\eta}^{c+\eta} f(x) dx \operatorname{car} f \geq 0$$

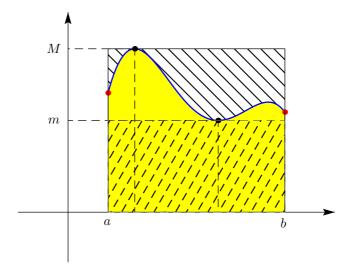
$$> \int_{c-\eta}^{c+\eta} \varepsilon dx = 2\eta \varepsilon > 0$$

ce qui est en contradiction avec la troisième hypothèse. f est donc nulle sur [a, b].

Remarque 16.5

- La réciproque de cette propriété est clairement vraie : $[\forall x \in [a,b], f(x) = 0] \implies \int_a^b f(x) dx = 0.$
- Ce théorème est bien entendu faux si l'on ne suppose pas $f \ge 0$ sur [a,b] ou si la fonction f est uniquement continue par morceaux : une fonction nulle partout sauf en un point est d'intégrale nulle.

Majorations fondamentales



ntegrale

FIGURE 16.10 – Encadrement d'une intégrale

Théorème 16.21 ★★★

Soient f une fonction réelle continue par morceaux sur le segment [a,b]. En appliquant la proposition 16.8, il existe des réels m et M tels que $\forall x \in [a,b]$, $m \le f(x) \le M$. On a alors

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

classique

Démonstration En appliquant la proposition 16.17, on obtient

$$\int_{a}^{b} m \, \mathrm{d}x \le \int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} \mathrm{M} \, \mathrm{d}x$$

ce qui donne le résultat.

Théorème 16.22 ★★★

Soit f une fonction continue par morceaux sur le segment [a,b] alors f est bornée sur [a,b] et

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} \left| f(x) \right| \, \mathrm{d}x \le (b - a) \sup_{[a,b]} \left| f \right|$$

l_abs_int

Démonstration Remarquons tout d'abord que comme f est continue par morceaux, utilisant les théorèmes d'opération sur les limites et les fonctions continues, il en est de même de |f| et donc |f| est intégrable sur [a,b]. De plus, on $a-|f| \le f \le |f|$. Par conséquent, d'après le théorème 16.17,

$$-\int_{[a,b]} |f| \le \int_{[a,b]} f \le \int_{[a,b]} |f|$$

ce qui donne le résultat.

THÉORÈME 16.23 Inégalité de la moyenne

Soient f et g deux fonctions continues par morceaux sur le segment [a, b] alors on a l'inégalité de la moyenne

$$\left| \int_{[a,b]} fg \right| \leq \sup_{[a,b]} |f| \int_{[a,b]} |g|$$

Démonstration Comme f est continue par morceaux sur le segment [a,b], appliquant la proposition 16.8, f est bornée sur [a,b]et il existe donc un réel M > 0 tel que $\sup_{[a,b]} |f| \le M$. On a donc : $\forall x \in [a,b]$, $|f(x)g(x)| \le M|g(x)|$ et donc, appliquant le théorème 16.17 et le théorème précédent,

$$\left| \int_{[a,b]} f g \right| \le \int_{[a,b]} \left| f g \right| \le \int_{[a,b]} M \left| g \right| \le M \int_{[a,b]} \left| g \right|$$

THÉORÈME 16.24 ★★★ Inégalité de Cauchy-Schwarz

Soient f et g des fonctions continues par morceaux sur le segment [a, b]. On a l'inégalité de Cauchy-Schwarz :

$$\boxed{\left|\int_{[a,b]} fg\right| \leq \sqrt{\int_{[a,b]} f} \sqrt{\int_{[a,b]} g}}$$

Démonstration Introduisons la fonction polynomiale P de la variable α définie par

$$P = \int_{[a,b]} (f + \alpha g)^2 = \alpha^2 \int_{[a,b]} g^2 + 2\alpha \int_{[a,b]} fg + \int_{[a,b]} f^2$$

- Remarquons que comme $\forall \alpha \in \mathbb{R}$, $(f + \alpha g)^2 \ge 0$, P est positive ou nulle.

 $Si \int_{[a,b]} g^2 = 0$ alors P est une fonction affine. Vu qu'elle est positive ou nulle, il est nécessaire que le coefficient de son terme de degré 1 soit nul, c'est-à-dire $\int_{[a,b]} fg = 0$. L'inégalité de Cauchy-Schwarz est alors démontrée dans ce cas
 - Sinon, P est un trinôme du second degré. Comme P ≥ 0, ses deux racines sont ou confondues ou complexes. Par conséquent son discriminant réduit \Delta est négatif ou nul

$$\Delta = \left(\int_{[a,b]} fg \right)^2 - \int_{[a,b]} f^2 \int_{[a,b]} g^2$$

On en déduit alors l'inégalité souhaitée. Dans le cas où f et g sont continues (et plus seulement continues par morceaux), remarquons qu'il y a égalité dans cette inégalité lorsque g = 0 ou alors lorsque le trinôme P possède une racine double. C'est-à-dire qu'il existe $\alpha \in \mathbb{R}$ tel que $\int_{[a,b]} (f+\alpha g)^2 = 0$. D'après le théorème 16.20 page 11, on doit avoir $f+\alpha g=0$, c'està-dire que les deux fonctions f et g sont proportionnelles. Réciproquement, si les deux fonctions sont proportionnelles, on vérifie qu'il y a égalité dans la majoration de Cauchy-Schwarz.

THÉORÈME 16.25 Inégalité de Minkowski

Soient deux fonctions continues f et g sur le segment [a,b]. En notant $\|f\|_2 = \sqrt{\int_a^b f^2(x) \, dx}$, on a l'inégalité suivante

$$||f+g||_2 \le ||f||_2 + ||g||_2$$

Démonstration Développons et utilisons Cauchy-Schwarz

$$\begin{split} \int_{[a,b]} (f+g)^2 &= \int_{[a,b]} f^2 + 2 \int_{[a,b]} fg + \int_{[a,b]} g^2 \\ &\leq \int_{[a,b]} f^2 + 2 \sqrt{\int_{[a,b]} f^2} \sqrt{\int_{[a,b]} g^2} + \int_{[a,b]} g^2 \\ &= \left(\sqrt{\int_{[a,b]} f^2} + \sqrt{\int_{[a,b]} g^2} \right)^2 \\ &= \left(\|f\|_2 + \|g\|_2 \right)^2 \end{split}$$

On en déduit l'inégalité souhaitée. Remarquons qu'il y a égalité dans cette majoration si et seulement si $\int_{[a,b]} fg = \left| \int_{[a,b]} fg \right| =$ $\sqrt{\int_{[a,b]}} f^2 \sqrt{\int_{[a,b]}} g^2$. D'une part, il y a égalité dans Cauchy-Schwarz donc les deux fonctions f et g sont proportionnelles et d'autre part, puisque $\int f g \ge 0$, le coefficient de proportionnalité doit être positif ou nul. On vérifie facilement la réciproque.

Valeur moyenne d'une fonction 16.2.8

DÉFINITION 16.7 Valeur moyenne d'une fonction

Soient [a,b] un segment et f une fonction continue par morceaux sur [a,b] à valeurs réelles. On appelle *valeur moyenne* de f sur le segment [a,b] la quantité

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x$$

16.2.9 Invariance de l'intégrale par translation

PROPOSITION 16.26 Invariance de l'intégrale par translation

Soient f une fonction continue par morceaux sur le segment [a,b] à valeurs réelles et $T \in \mathbb{R}$. Soit $f_T : \begin{cases} [a+T,b+T] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f(x-T) \end{cases}$. Alors f_T est continue par morceaux sur le segment [a+T,b+T] et

$$\int_{a+T}^{b+T} f_{T}(x) dx = \int_{a}^{b} f(x) dx$$

Démonstration

• Supposons que f est une fonction en escalier sur [a,b]. Soit $\tau: a=x_0 < x_1 < ... < x_n=b$ une subdivision subordonnée à f. Il existe donc $c_1, ..., c_n \in \mathbb{R}$ tels que $f_{||x_i, x_{i+1}|} = c_i$. Posons $\tau_T: a+T=x_0+T < x_1+T < ... < x_n+T=b+T$. τ_T est une subdivision subordonnée à f_T . De plus : $f_{T||x_i+T, x_{i+1}+T|} = c_i$. Par conséquent :

$$\int_{\left[a+\mathrm{T},b+\mathrm{T}\right]}f_{\mathrm{T}}=\sum_{k=1}^{n}c_{k}\left(x_{k+1}+\mathrm{T}-\left(x_{k}+\mathrm{T}\right)\right)=\sum_{k=1}^{n}c_{k}\left(x_{k+1}-x_{k}\right)=\int_{\left[a,b\right]}f$$

Le théorème est alors démontré pour les fonctions en escalier.

• Supposons que f est une fonction continue par morceaux sur le segment [a, b]. Par définition de l'intégrale, on a :

$$\begin{split} \int_{a+\mathrm{T}}^{b+\mathrm{T}} f_{\mathrm{T}}(x) \, \mathrm{d}x &= \sup \left\{ \int_{[a+\mathrm{T},b+\mathrm{T}]} \varphi \mid \varphi \text{ est en escalier sur } [a+\mathrm{T},b+\mathrm{T}] \text{ et } \varphi \leqslant f_{\mathrm{T}} \right\} \\ &= \sup \left\{ \int_{[a,b]} \varphi_{-\mathrm{T}} \mid \varphi \text{ est en escalier sur } [a+\mathrm{T},b+\mathrm{T}] \text{ et } \varphi \leqslant f_{\mathrm{T}} \right\} \\ &= \sup \left\{ \int_{[a,b]} \varphi \mid \varphi \text{ est en escalier sur } [a,b] \text{ et } \varphi \leqslant f \right\} \\ &= \int_{a}^{b} f(x) \, \mathrm{d}x \end{split}$$

16.3 Primitive et intégrale d'une fonction continue

Dans toute cette section, I désigne un intervalle de $\mathbb R$ non trivial.

DÉFINITION 16.8 Primitive

Soit: $I \to \mathbb{R}$. On dit qu'une fonction $F: I \to \mathbb{R}$ est une *primitive* de f sur l'intervalle I si et seulement si

- (H) la fonction F est dérivable sur I,
- H2 sa dérivée est égale à $f: \forall x \in I$, F'(x) = f(x)

PROPOSITION 16.27 Deux primitives d'une même fonction diffèrent d'une constante

Soit une fonction $f: I \to \mathbb{R}$ définie sur un intervalle I. Si F et G sont deux primitives de f sur I alors il existe $c \in \mathbb{R}$ tel que : G = F + c.

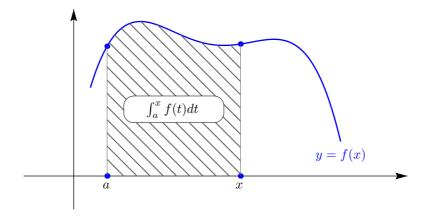
Démonstration Comme F et G sont des primitives de f sur I, on a (G-F)'=f-f=0. Par conséquent G-F est une fonction constante sur I, c'est une conséquence du théorème des accroissements finis (??). Il existe donc $c \in \mathbb{R}$ tel que G = F + c.

73009160

Remarque 16.6 Le fait que I est un intervalle est fondamental. Si par exemple $I = [0,1] \cup [2,3]$ la fonction G définie par G(x) = 0 sur [1,2], G(x) = 1 sur [2,3] est une primitive de la fonction f sur I. La fonction F nulle est également une primitive de f sur I et ces deux fonctions ne diffèrent pas d'une constante.

Considérons une fonction f continue par morceaux sur un *intervalle* I et un point $a \in I$. Alors, pour tout réel $x \in I$, le segment [a, x] est inclu dans l'intervalle I ce qui nous permet de définir la fonction suivante :

$$F: \begin{cases} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{a}^{x} f(t) dt \end{cases}$$



.е

FIGURE 16.11 – Théorème fondamental de l'analyse

LEMME 16.28 La fonction F est continue sur I

Si la fonction f est continue par morceaux sur l'intervalle I, alors la fonction F est continue sur I.

Démonstration Considérons un segment [a,b] inclus dans l'intervalle I. Comme la fonction f est continue par morceaux sur le segment [a,b], elle est bornée sur ce segment. Notons $M_{[a,b]} = \sup_{x \in [a,b]} |f(x)|$. Soient $(x,y) \in [a,b]^2$, avec x < y. En utilisant Chasles et la majoration classique 16.21 page 12,

$$|\mathrm{F}(y) - \mathrm{F}(x)| = \left| \int_a^y f(t) \, \mathrm{d}t - \int_a^x f(t) \, \mathrm{d}t \right| = \left| \int_x^y f(t) \, \mathrm{d}t \right| \le \int_x^y |f(t)| \, \mathrm{d}t \le \mathrm{M}_{[a,b]} |y - x|$$

Nous avons montré que la restriction de F au segment [a, b] était lipschitzienne, donc continue. La fonction F est donc continue en tout point de tout segment inclus dans I ce qui montre qu'elle est continue sur l'intervalle I.

Le théorème suivant permet de relier calcul différentiel et calcul intégral. Les anglo-saxons lui ont donné le nom de « Fundamental Theorem of Calculus » que nous traduisons par :

THÉORÈME 16.29 $\bigstar \bigstar \bigstar \bigstar \bigstar$ Théorème fondamental de l'analyse

H1 Soit I un intervalle de \mathbb{R} .

H2 Soit f une fonction continue sur I.

Soit $a \in I$ alors la fonction $F: \begin{cases} I \longrightarrow \mathbb{R} \\ x \longmapsto \int_a^x f(t) dt \end{cases}$ est de classe \mathscr{C}^1 sur I et est la seule primitive de f qui s'annule en f f et f

bidam<u>e</u>prah

Démonstration Soit $x_0 \in I$. Pour simplifier la preuve, supposons que x_0 n'est pas l'extrémité droite de l'intervalle I. Nous allons montrer que la fonction F est dérivable au point x_0 . Soit h > 0 tel que $x_0 + h \in I$. Puisque la fonction f est continue au point x_0 , lorsque h est petit, pour $t \in [x_0, x_0 + h]$, f(t) est proche de $f(x_0)$. Effectuons cette approximation :

$$\mathrm{F}(x_0+h) = \int_a^{x_0+h} f(t) \; \mathrm{d}t = \int_a^{x_0} f(t) \; \mathrm{d}t + \int_{x_0}^{x_0+h} f(t) \; \mathrm{d}t = \mathrm{F}(x_0) + \int_{x_0}^{x_0+h} \left[f(x_0) + [f(t) - f(x_0)] \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t \\ = \mathrm{F}(x_0) + h f(x_0) + \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \; \mathrm{d}t$$

Nous avons fait apparaître un reste de notre approximation

$$R(h) = \int_{x_0}^{x_0+h} [f(t) - f(x_0)] dt$$

Soit $\varepsilon > 0$. Puisque la fonction f est continue au point x_0 , il existe $\eta > 0$ tel que $\forall t \in [x_0, x_0 + \eta], |f(t) - f(x_0)| \le \varepsilon$. Soit $h \in]0, \eta]$,

$$|\mathrm{R}(h)| = \left| \int_{x_0}^{x_0+h} \left[f(t) - f(x_0) \right] \, \mathrm{d}t \right| \leq \int_{x_0}^{x_0+h} \left| f(t) - f(x_0) \right| \, \mathrm{d}t \leq \varepsilon h$$

Par conséquent, $|R(h)|/h \le \epsilon$. Nous avons montré que $R(h)/h \xrightarrow{h \to 0} 0$, donc que R(h) = o(h). La fonction F admet un développement limité à l'ordre 1 au point x_0 et d'après le théorème ??, elle est dérivable à droite au point x_0 avec $F'_d(x_0) = f(x_0)$. On montre de la même façon (en prenant h < 0) que F est dérivable à gauche en x_0 avec $F'_g(x_0) = f(x_0)$. Puisque F' = f est continue par hypothèse, la fonction F est de classe \mathscr{C}^1 sur l'intervalle I.

Le théorème fondamental garantit l'existence de primitives d'une fonction *continue* sur un intervalle.

COROLLAIRE 16.30 Une fonction continue sur un intervalle possède une primitive

- нı Soit I un intervalle de R.
- H_2 Soit f une fonction continue sur I

alors f possède une primitive F sur I

aantinua

Jusqu'à présent, nous avons construit de façon théorique l'intégrale d'une fonction continue par morceaux, mais nous sommes pour l'instant incapables de calculer la moindre intégrale (si ce n'est pour les fonctions en escalier)! Le théorème fondamental permet d'effectuer ce calcul si l'on connaît une primitive de notre fonction sur le segment [a, b].

COROLLAIRE 16.31 Calcul d'intégrale

Soit $f: I \to \mathbb{R}$ une application continue sur le segment $[a, b] \subset I$. Soit G une primitive de f sur [a, b] alors l'intégrale de f sur [a, b] est donnée par

$$\int_{a}^{b} f(t) dt = G(b) - G(a)$$

Démonstration Comme la fonction f est continue sur l'intervalle I, elle admet comme primitive sur I la fonction F du théorème fondamental. Soit G une primitive quelconque de f sur I. Il existe $c \in \mathbb{R}$ tel que G = F + c. Par conséquent

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = [G(b) + c] - [G(a) + c] = G(b) - G(a)$$

THÉORÈME 16.32 ★★★ Théorème fondamental (deuxième forme)

Soit f une fonction de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} . Soit $a \in I$. On a

$$f(b) - f(a) = \int_{a}^{b} f'(t) dt$$

degedeal2

Démonstration Comme f est de classe \mathscr{C}^1 sur I, f' est continue et est donc bien intégrable sur tout segment [a,b] de I. De plus f est une primitive de f' sur I. Appliquant le résultat précédent, on a bien $\int_a^x f'(t) dt = f(b) - f(a)$.

Remarque 16.7 Pensez à utiliser cette formule lorsque vous avez une hypothèse sur f' et vous voulez obtenir une propriété sur la fonction f.

Exemple 16.2 On note $E = \{f \in \mathcal{C}^1([a,b]) \mid f(a) = 0\}$. Nous allons montrer qu'il existe une constante $C \ge 0$ telle que $\forall f \in E, \|f\|_2 \le C\|f'\|_2$ (c'est l'inégalité de Poincaré).

Nous voulons majorer une quantité faisant intervenir $f(\|f\|_2)$ en fonction d'une quantité faisant intervenir $f'(\|f'\|_2)$. Il n'y a pas à hésiter sur l'outil à utiliser : c'est le théorème fondamental.

Soit $\hat{f} \in E$. Puisque f est de classe \mathscr{C}^1 sur l'intervalle [a,b], d'après le théorème fondamental deuxième forme, pour $x \in [a,b]$,

 $f(x) = f(a) + \int_{a}^{x} f'(t) dt = \int_{a}^{x} f'(t) dt$

16

Alors en utilisant Cauchy-Schwarz,

$$f^{2}(x) = \left(\int_{a}^{x} 1 \times f'(t) \, dt\right)^{2} \le \int_{a}^{x} 1^{2} \, dt \int_{a}^{x} f'^{2}(t) \, dt \le (x - a) \int_{a}^{b} f'^{2}(t) \, dt$$

Avec la majoration classique 16.21 page 12,

$$\int_{a}^{b} f^{2}(t) dt \le \int_{a}^{b} f'^{2}(t) dt \int_{a}^{b} (x - a) dx = \frac{(b - a)^{2}}{2} \int_{a}^{b} f'^{2}(t) dt$$

Il suffit de prendre $C = (b - a)/\sqrt{2}$.

Notation 16.3

- On note $[F(x)]_a^b = F(b) F(a)$.
- Si f est une fonction continue, la notation $\int f(x) dx$ est utilisée pour représenter une primitive quelconque de la fonction f. Avec les notations précédentes :

$$\int f(x) dx = \int_{a}^{x} f(t) dt + C^{te}$$

THÉORÈME 16.33 ★★★ Dérivée d'une fonction définie par une intégrale

- (HI) Soit une fonction f continue sur un intervalle I,
- H2 Soient $u, v : J \rightarrow I$ deux fonctions dérivables sur l'intervalle J.

Alors la fonction

G:
$$\begin{cases} J & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{u(x)}^{v(x)} f(t) \, \mathrm{d}t \end{cases}$$

est dérivable sur l'intervalle J et

$$\forall x \in J, \quad G'(x) = v'(x)f[v(x)] - u'(x)f[u(x)]$$

damental3

Démonstration Soit un réel $a \in I$ et F la fonction du théorème fondamental. Il suffit de remarquer que pour $x \in J$, avec la relation de Chasles.

$$G(x) = \int_{a}^{v(x)} - \int_{a}^{u(x)} = F(v(x)) - F(u(x))$$

Puisque $G = F \circ v - F \circ u$ et que la fonction F est dérivable sur I (théorème fondamental), que u et v sont dérivables sur J à valeurs dans I, d'après le théorème ?? page ??, la fonction G est dérivable sur J et $\forall x \in J$, $G'(x) = F'(v(x)) \times v'(x) - F'(u(x)) \times u'(x)$ d'où la formule du théorème puisque F' = f.

30101144

Exemple 16.4 Étudions les variations de la fonction

$$g: \left\{ \begin{array}{ccc}]1, +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{x}^{x^{2}} \frac{\mathrm{d}t}{t^{2}-1} \end{array} \right.$$

La fonction g est définie et dérivable sur l'intervalle $I =]1, +\infty[$. Notons $J =]1, +\infty[$ et définissons les fonctions

$$u: \left\{ \begin{array}{cccc} \mathbf{J} & \longrightarrow & \mathbf{I} \\ x & \longmapsto & x \end{array} \right. \quad \nu: \left\{ \begin{array}{cccc} \mathbf{J} & \longrightarrow & \mathbf{I} \\ x & \longmapsto & x^2 \end{array} \right. \quad f: \left\{ \begin{array}{cccc} \mathbf{I} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x^2 - 1} \end{array} \right.$$

Les fonctions u, v sont dérivables de J vers I et la fonction f est continue sur l'intervalle I. D'après le théorème précédent, g est dérivable sur l'intervalle J et pour $x \in J$,

$$g'(x) = 2xf(x^2) - f(x) = -\frac{x^2 - 2x - 1}{(x^2 - 1)(x^2 + 1)}$$

Le trinôme $x^2 - 2x - 1$ s'annule sur I en $x_0 = 1 + \sqrt{2}$ et on en déduit que g est croissante sur $]1, x_0]$ puis décroissante sur $[x_0, +\infty[$.

17

16.4 Calcul de primitives et d'intégrales

16.4.1 Intégration par parties

PROPOSITION 16.34 Méthode d'intégration par parties

Soit I un intervalle de \mathbb{R} . On suppose que :

(HI

u et v des fonctions de classe \mathscr{C}^1 sur I.

alors

$$\int_{a}^{b} u'(t) v(t) dt = [u(t) v(t)]_{a}^{b} - \int_{a}^{b} u(t) v'(t) dt$$

Démonstration Par opérations sur les fonctions de classe \mathscr{C}^1 sur I, la fonction uv est de classe \mathscr{C}^1 sur I. D'après le théorème fondamental deuxième forme,

$$(uv)(b) - (uv)(a) = \int_{a}^{b} (uv)'(t) dt = \int_{a}^{b} (u'v)(t) + (uv')(t) dt = \int_{a}^{b} (u'v)(t) dt + \int_{a}^{b} (uv')(t) dt$$

Remarque 16.8 Application au calcul de primitive. Dans un calcul de primitive, la formule d'intégration par parties s'écrit

 $\int u'(t) v(t) dt = u(t) v(t) - \int u(t) v'(t) dt$

Remarque 16.9 On consultera la partie ?? page ?? pour apprendre à utiliser cette technique.

16.4.2 Changement de variables

PROPOSITION 16.35 Changement de variable

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une application continue sur I. Soient $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\alpha < \beta$ et $\phi: [\alpha, \beta] \to I$ de classe \mathscr{C}^1 sur le segment $[\alpha, \beta]$ alors

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$$

Démonstration Comme f est continue sur I, elle possède une primitive F sur I et pour tout $x_0, x_1 \in I$, on a $\int_{x_0}^{x_1} f(t) dt = F(x_1) - F(x_0)$. En particulier, comme $\phi(\alpha), \phi(\beta) \in I$, on a $\int_{\phi(\alpha)}^{\phi(\beta)} f(t) dt = F(\phi(\beta)) - F(\phi(\alpha))$. Par ailleurs, $F \circ \phi$ est de classes \mathscr{C}^1 sur $[\alpha, \beta]$ comme composée d'applications de classes \mathscr{C}^1 sur $[\alpha, \beta]$. En appliquant le théorème fondamental deuxième forme, on obtient

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\alpha}^{\beta} (F \circ \varphi)'(u) du = \int_{\alpha}^{\beta} \varphi'(u) F'(\varphi(u)) du = \int_{\alpha}^{\beta} \varphi'(u) f(\varphi(u)) du$$

PLAN 16.2 : Changement de variable dans un calcul d'intégrale

Pour calculer
$$\int_a^b f(t) dt$$
,

- 1. On vérifie que $\varphi : [\alpha, \beta] \to I$ est de classe \mathscr{C}^1 sur le segment $[\alpha, \beta]$ et que $\varphi(\alpha) = a$, $\varphi(\beta) = b$.
- 2. On pose $\begin{cases} x = \varphi(t) \\ dx = \varphi'(t) dt \end{cases}$
- 3. On écrit $\int_a^b f(u) du = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$

Ne pas oublier de transformer les bornes

— Calculons I = $\int_0^1 \sqrt{1-t^2} dt$ en utilisant le changement de variable $t = \sin u$:

$$I = \int_0^1 \sqrt{1 - t^2} dt = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 u \cos u} du$$

$$= \int_0^{\frac{\pi}{2}} \cos^2 u du \text{ car cos est positif sur } \left[0, \frac{\pi}{2}\right]$$

$$= \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2u}{2} du = \left[\frac{u}{2} + \frac{\sin 2u}{4}\right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}$$

N'aurions-nous pas pu obtenir ce résultat sans calcul? (Représenter la courbe d'équation $y = \sqrt{1 - x^2}$...)

— Calculons $J = \int_0^{\ln \sqrt{3}} \frac{e^x}{1 + e^{2x}} dx$ en utilisant le changement de variable $u = e^x$ (on a donc $x = \ln u$).

$$J = \int_0^{\ln\sqrt{3}} \frac{e^x}{1 + e^{2x}} dx = \int_1^{e^{\sqrt{3}}} \frac{u}{1 + u^2} \frac{1}{u} du$$
$$= \int_1^{e^{\sqrt{3}}} \frac{1}{1 + u^2} du$$
$$= \left[\arctan u\right]_1^{\sqrt{3}} = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$$

Remarque 16.10 Pour calculer une intégrale du type $\int_a^b f(x^n) \frac{\mathrm{d}x}{x}$, effectuer le changement de variables $y = x^n$.

Changement de variable affine

L'utilisation d'un changement de variable affine permet souvent sans calcul d'intégrale, de prouver des propriétés graphiquement évidentes.

PROPOSITION 16.36 Intégrale d'une fonction périodique

Soit f une fonction continue par morceaux sur \mathbb{R} , T-périodique. Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. Alors:

$$\int_{a}^{a+T} f(x) dx = \int_{b}^{b+T} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \int_{a+T}^{b+T} f(x) dx$$

Démonstration

- Avec le changement de variables $\begin{cases} t = u T \\ du = dt \end{cases}$, on obtient $\int_{a+T}^{b+T} f(t) dt = \int_a^b f(u-T) du = \int_a^b f(t) dt$ car f est T pério-
- Avec la relation de Chasles, $\int_a^{a+T} f(t) dt = \int_a^b f(t) dt + \int_b^{b+T} f(t) dt + \int_{b+T}^{a+T} f(t) dt$. En appliquant l'égalité précédente, on obtient $\int_a^b f(t) dt + \int_{b+T}^{a+T} f(t) dt = 0$ d'où le résultat.

 Dans le cas où la fonction f est continue sur \mathbb{R} , on peut retrouver ce résultat à l'aide du théorème fondamental. Considérons la

fonction

$$g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{x}^{x+T} f(t) \, \mathrm{d}t \end{array} \right.$$

Elle est dérivable sur \mathbb{R} et pour $x \in \mathbb{R}$, g'(x) = f(x+T) - f(x) = 0. La fonction est donc constante et on retrouve le résultat.

PROPOSITION 16.37 Intégrale d'une fonction paire ou impaire

Soit a > 0 et f une fonction continue par morceaux sur le segment [-a, a].

— Si f est paire,

$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx$$

En particulier

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

Si f est impaire,

$$\int_{-a}^{0} f(x) dx = -\int_{0}^{a} f(x) dx$$

En particulier

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

Démonstration Par application de la relation de Chasles, on a $\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$ Par le changement de variable $\begin{cases} u = -x \\ du = -dx \end{cases}$, on obtient $\int_{-a}^{0} f(x) dx = -\int_{a}^{0} f(-u) du = \int_{0}^{a} f(-u) du$

- Supposons que f est paire. On a alors $\int_0^a f(-u) du = \int_0^a f(u) du$ et donc $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$. Supposons que f est impaire. On a alors $\int_0^a f(-u) du = -\int_0^a f(u) du$ et donc $\int_{-a}^a f(x) dx = 0$.

Remarque 16.11 Le changement de variable $\varphi : \begin{cases} [0,1] & \longrightarrow [a,b] \\ t & \longmapsto a + (b-a)t \end{cases}$ permet de transformer une intégrale sur le segment [a, b] en une intégrale sur le segment [0, 1]

$$\int_{a}^{b} f(u) du = (b-a) \int_{0}^{1} f(a+(b-a)t) dt$$

16.4.4 Étude d'une fonction définie par une intégrale

Nous allons résoudre l'exercice suivant, très typique des concours :

Exercice 16.1 $\star\star$

Soit f la fonction donnée par $x \mapsto \int_x^{2x} \frac{e^{-t}}{t} dt$.

- 1. Montrer que f est définie sur \mathbb{R}^* .
- 2. Prouver que:

$$\forall x \in \mathbb{R}_+^*, \quad e^{-2x} \ln 2 \le f(x) \le e^{-x} \ln 2$$

Établir une inégalité analogue sur \mathbb{R}_{-}^{*} .

- 3. En déduire que l'on peut prolonger f par continuité en 0 et étudier le comportement de f à l'infini. On appelle encore f la fonction ainsi prolongée.
- 4. Montrer que f est dérivable sur \mathbb{R}^* et calculer sa dérivée.
- 5. Étudier la dérivabilité de f en 0 et déterminer la position de son graphe par rapport à la tangente en ce point.
- 6. Étudier les variations de f et tracer son graphe.

16.5 Formules de Taylor

16.5.1 Formule de Taylor avec reste intégral

Soit f une fonction de classe \mathscr{C}^1 sur un intervalle I et un réel $a \in I$. Partons du théorème fondamental deuxième forme pour écrire pour $x \in I$,

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

Si la fonction f est de classe \mathscr{C}^2 sur I, on peut effectuer une intégration par parties

$$\begin{cases} u(x) = f'(t) & u'(x) = f''(t) \\ v'(x) = 1 & v(x) = t \end{cases} u, v \text{ sont de classe } \mathscr{C}^1$$

$$f(x) = f(a) + \left[tf'(t)\right]_a^x - \int_a^x tf''(t) dt = f(a) + xf'(x) - af'(a) - \int_a^x tf''(t) dt$$

On se rend compte qu'il est plus intéressant de considérer la primitive de 1 qui s'annule en x de telle façon à ne faire intervenir que les valeurs de f en a:

$$\begin{cases} u(x) = f'(t) & u'(x) = f''(t) \\ v'(x) = 1 & v(x) = -(x - t) \end{cases} u, v \text{ sont de classe } \mathscr{C}^1$$

$$f(x) = f(a) + \left[-(x-t)f'(t) \right]_a^x + \int_a^x (x-t)f''(t) dt = f(a) + (x-a)f'(a) + \int_a^x (x-t)f''(t) dt$$

Si la fonction f est de classe \mathscr{C}^{n+1} , on peut effectuer n intégrations par parties successives pour trouver la formule suivante.

THÉORÈME 16.38 Formule de Taylor avec reste intégral

Soit f une fonction de classe \mathscr{C}^{n+1} sur un intervalle I de \mathbb{R} . Si $(a, x) \in I^2$. Alors :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

— Le polynôme

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + \frac{(x-a)}{1!} f'(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a)$$

est appelé polynôme de Taylor de f de degré n.

— La fonction définie sur I par

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

est appelée reste intégral.

de_rayror

30110027

Démonstration C'est une simple récurrence. Pour n = 0, la formule est le théorème fondamental deuxième forme et pour passer de n à n + 1, il suffit d'effectuer une intégration par partie de $R_{n-1}(x)$ en primitivant $(x-t)^n/n!$ en $-(x-t)^{n+1}/(n+1)!$.

Remarque 16.12 Lorsque nous demandons à nos étudiants l'idée de la démonstration de la formule de Taylor intégrale, toute la classe s'exclame : « par récurrence »! Une récurrence n'est pas une idée de démonstration, simplement une technique de rédaction. Ici, les idées sont :

- 1. Le théorème fondamental deuxième forme.
- 2. Intégrer par parties en primitivant 1 pour que les primitives successives s'annulent en x.

Les examinateurs de concours se plaignent chaque année des candidats qui sont incapables de retrouver cette formule sans se tromper. En cas de doute, faites le calcul de l'introduction en intégrant par parties le théorème fondamental,

$$f(x) = f(a) + (x - a)f'(a) + \int_{a}^{x} (x - a)f''(t) dt$$

et à partir de là vous retrouvez sans problème la forme générale.

Exemple 16.6

— Formule de Taylor avec reste intégral pour la fonction cosinus à l'ordre 2 en 0

$$\forall x \in \mathbb{R}, \quad \cos x = 1 - \frac{x^2}{2} + \int_0^x \frac{(x-t)^2}{2!} \sin(t) dt$$

— Formule de Taylor avec reste intégral pour la fonction exponentielle à l'ordre $n, n \in \mathbb{N}$, en 0:

$$\forall x \in \mathbb{R}, \quad \exp x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \int_0^x \frac{(x-t)^n}{n!} \exp(t) dt$$

Remarque 16.13 Effectuant le changement de variable t = a + (x - a)u, on peut exprimer le reste intégral de la façon suivante

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

$$= \int_0^1 (x-a)^{n+1} \frac{(1-u)^n}{n!} f^{(n+1)}(a+(x-a)u) du$$

$$= (x-a)^{n+1} \int_0^1 \frac{(1-u)^n}{n!} f^{(n+1)}(a+(x-a)u) du$$

16.5.2 Inégalité de Taylor-Lagrange

THÉORÈME 16.39 ★★★ Inégalité de Taylor-Lagrange

Soit f une fonction de classe \mathscr{C}^{n+1} sur un intervalle I de \mathbb{R} et soit $a \in I$. Si $x \in I$, on peut, d'après le théorème précédent 16.38, écrire f(x) sous la forme

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$$
$$= T_{n}(x) + R_{n}(x)$$

On a alors

$$|f(x) - T_n(x)| = |R_n(x)| \le \frac{|x - a|^{n+1}}{(n+1)!} M_{n+1}$$

où M_{n+1} est un majorant de $|f^{(n+1)}|$ sur [a,x] (qui existe car $f^{(n+1)}$ est continue sur le segment [a,x])

Démonstration Par application de la formule de Taylor avec reste intégral 16.38, on a, pour tout $a, x \in I$, si $a \le x$,

$$\begin{split} |\mathbf{R}_{n}(x)| &= \left| \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \, \mathrm{d}t \right| \\ &\leq \sup_{t \in [a,x]} \left| f^{(n+1)}(t) \right| \int_{a}^{x} \frac{|x-t|^{n}}{n!} \, \mathrm{d}t \\ &\leq M_{n+1} \int_{a}^{x} \frac{(x-t)^{n}}{n!} \, \mathrm{d}t \\ &\leq M_{n+1} \left[-\frac{(x-t)^{n+1}}{(n+1)!} \right]_{a}^{x} \\ &\leq M_{n+1} \frac{|x-a|^{n+1}}{(n+1)!} \end{split}$$

La démonstration est similaire lorsque $x \le a$ (ne pas oublier d'inverser les bornes).

Brook Taylor, né le 18 août 1685 à Edmonton en Angleterre et mort le 29 décembre 1731 à Londres

Mathématicien Anglais. Brook Taylor est issu d'une famille aisée. Il reçoit sa première éducation de précepteurs puis intègre l'université de Cambridge dont il ressort diplomé en 1709 après des études en mathématiques. C'est à John Machin, dont il fut l'élève, qu'il doit son entrée en 1712 à la Royal Society. Son premier travail concernait l'étude de la deuxième loi de Kepler sur le mouvement des planètes. Il devient secrétaire de la Royal Society en 1714 et participe au comité chargé de départager Newton et Leibniz à propos de la paternité de l'invention du calcul infinitésimal. On mesurera l'impartialité de ce comité à l'admiration que Taylor portait à Newton ... Il publia deux livres de mathématiques la même année 1715 "Methodus incrementorum directa and reversed" et "Linear Perspective". On trouve dans le premier la formule qui porte son nom mais sans mention du reste et sans que ne soit abordé les problèmes de convergence. Bien que Taylor ait découvert cette formule de manière indépendante, d'autres mathématiciens l'avaient mise en évidence auparavant comme Grégory, Newton, Leibniz et Johann Bernouilli. L'importance de cette formule ne fut

perçue que bien plus tard, en 1772 par Lagrange qui la promulgua comme principe de base du calcul différentiel. Dans ce même livre, Taylor découvre la formule d'intégration par parties et invente le calcul aux différences finies. La vie de Taylor ne fut pas heureuse. Son premier mariage, désapprouvé par son père, se termine par la mort de son épouse lors de sa grossesse et de l'enfant qu'elle portait. Son second mariage se termine de manière identique si ce n'est que le bébé survivra. Taylor, très ébranlé, ne survécut que deux ans à sa seconde femme.

Ces différents problèmes, ajoutés à l'aridité de ces textes mathématiques, ont fait que le génie de Taylor n'a pas été perçu à sa juste valeur par ses contemporains.

:Bio Tavlo

16.5.3 Formule de Taylor-Young

THÉORÈME 16.40 ★★★ Formule de Taylor-Young

Soient f une fonction de classe \mathscr{C}^n sur un intervalle I de \mathbb{R} et $a \in I$. Il existe une fonction ε définie sur I telle que

$$\forall x \in I$$
, $f(x) = T_n(x) + (x - a)^n \varepsilon(x)$

avec $\varepsilon(x) \xrightarrow[x \to a]{} 0$. Autrement dit,

$$\forall x \in I, \quad f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \underset{x \to a}{o} ((x-a)^n)$$

lor_young

Démonstration Supposons dans un premier temps que la fonction f est de classe \mathscr{C}^{n+1} sur I. Considérons un segment inclus dans l'intervalle I contenant le point $a, a \in [\alpha, \beta]$. La fonction $f^{(n+1)}$ étant continue sur ce segment, elle est bornée. Notons $M = \sup_{x \in [\alpha, \beta]} |f^{(n+1)}(x)|$. D'après la formule de Taylor-Lagrange, on majore alors

$$|\mathbf{R}_n(x)| \le |x-a|^n \underbrace{\frac{\mathbf{M}|x-a|}{(n+1)!}}_{\mathcal{E}(x)}$$

et on a bien $\varepsilon(x) \xrightarrow[x \to a]{} 0$.

Dans le cas où la fonction f est uniquement de classe \mathscr{C}^n , la démonstration est plus technique. Utilisons la formule de Taylor avec reste intégral à l'ordre n-1:

$$f(x) = T_{n-1}(x) + R_{n-1}(x)$$
 où $R_{n-1}(x) = \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$

Lorsque x est proche de a, pour $t \in [a,x]$, f(t) est proche de f(a). Mettons en évidence cette approximation :

$$R_{n-1}(x) = \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f(a) dt + \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} [f(t) - f(a)] dt = \frac{(x-a)^{n}}{n!} f(a) + \theta(x)$$

Il ne reste qu'à vérifier que $\theta(x) = o((x-a)^n)$ au voisinage du point a. Soit $\varepsilon > 0$. Puisque $f^{(n)}$ est continue au point a, il existe $\eta > 0$ tel que pour $t \in I$, $|t-a| \le \eta \implies |f(t) - f(a)| \le \varepsilon$. Soit $x \in I$ tel que $|x-a| \le \eta$. Puisque $\forall t \in [a,x], |t-a| \le \eta$, on majore l'intégrale (prenons x > a pour simplifier)

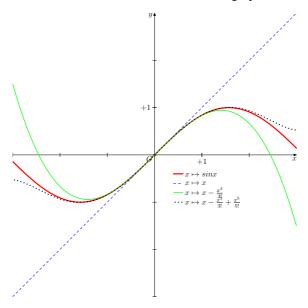
$$|\theta(x)| \leq \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} |f(t) - f(a)| \, \mathrm{d}t \leq \varepsilon \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} = \varepsilon \frac{(x-a)^{n}}{n!}$$

Nous avons donc montré que $|\theta(x)/(x-a)^n| \le \varepsilon$ et donc que $\theta(x)/(x-a)^n \xrightarrow[x \to a]{} 0$.

Exemple 16.7 Cette formule, appliquée à l'ordre 5 en 0 pour la fonction sin permet d'écrire

$$\forall x \in \mathbb{R}, \quad \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \underset{x \to 0}{o} (x^5)$$

On approxime ainsi, dans un voisinage de 0 la fonction sin par un polynôme de degré 5. Plus l'ordre utilisé est élevé, meilleure est l'approximation obtenue. On s'en convaincra en étudiant les graphes ci dessous.



Multimédia : Tracé de \sin , des polynômes de Taylor T_n en fonction de n et voir que l'approximation est locale en 0.

16.5.4 Utilisation des trois formules de Taylor

Il est important dans les exercices de savoir choisir son outil. Quand utiliser une formule de Taylor-Young? Une inégalité de Taylor-Lagrange?

- La formule de Taylor-Young fournit une approximation *locale* d'une fonction f au voisinage d'un point a par un polynôme T_n , le polynôme de Taylor.
- L'inégalité de Taylor-Lagrange fournit une majoration *globale* du reste R_n de cette approximation sur un segment [a,x], même lorsque x est éloigné de a.
- La formule de Taylor-intégrale est la plus précise et donne explicitement le reste R_n sous forme d'une intégrale. Les deux autres formules en sont une conséquence. En première année, on ne l'utilise pas beaucoup, mais elle est importante en deuxième année.

Exemple 16.8 Déterminer $\lim_{x\to 0} \frac{\sinh(x) - \sin(x)}{x^3}$. Les équivalents usuels ne suffisent pas ici puisque $\sin x \sim x$ et sh $x \sim x$ et on ne peut pas sommer ces équivalents. Nous avons besoin du comportement *local* des fonctions sh et sin au voisinage du point 0. Utilisons la formule de Taylor-Young à l'ordre 3. Les dérivées successives de ces fonctions en zéro sont simples à calculer et on obtient

$$sh(x) = x + x^3/3! + o(x^3)$$
 $sin(x) = x - x^3/3! + o(x^3)$

Ces formule sont des égalités et on peut les sommer pour trouver que

$$sh(x) - sin(x) = x^3/3 + o(x^3)$$

d'où $[sh(x) - sin(x)]/x^3 = 1/3 + o(1) \xrightarrow[x \to 0]{} 1/3.$

Exemple 16.9 Soit une fonction f de classe \mathscr{C}^{∞} sur \mathbb{R} telle que

$$\forall (x,h) \in \mathbb{R}^2$$
, $f(x+h)f(x-h) = (f(x))^2$

Montrons qu'alors $\forall x \in \mathbb{R}$, $f''(x) f(x) = (f'(x))^2$.

Écrivons la formule de Taylor-Young pour la fonction f entre x et $x + \theta$.

$$f(x+\theta) = f(x) + \theta f'(x) + \frac{\theta^2}{2} f''(x) + \theta^2 \varepsilon(\theta) \quad (\varepsilon(\theta) \xrightarrow[\theta \to 0]{} 0)$$

Si $h \neq 0$, en prenant $\theta = h$ et $\theta = -h$, on trouve que

$$f(x)^{2} = f(x+h)f(x-h) = \left[f(x) + hf'(x) + \frac{h^{2}}{2}f''(x) + h^{2}\varepsilon(h)\right] \left[f(x) - hf'(x) + \frac{h^{2}}{2}f''(x) + h^{2}\varepsilon(-h)\right]$$

En développant et en ordonnant par rapport aux puissances de h, on trouve que

$$0 = h^{2} \left[-(f')^{2}(x) + f(x)f''(x) \right] + h^{2} \varphi(h)$$

avec $\varphi(h) \xrightarrow[h \to 0]{} 0$. En divisant par h^2 et en faisant tendre h vers 0, on obtient le résultat. L'idée était d'utiliser la relation de l'énoncé en faisant tendre h vers 0, d'où l'utilisation de la formule de Taylor-Young.

Exemple 16.10 Étudier la limite en 0 de la fonction définie par

$$F(x) = \frac{1}{x} \int_{x}^{2x} \frac{1 - \cos t}{t^2} dt$$

Il nous faut une approximation de la fonction définie par $f(t) = \cos t$ au voisinage de zéro. Utilisons une formule de Taylor à l'ordre 2.

$$\cos t = 1 - \frac{t^2}{2} + R_2(t)$$

On en tire que $(1 - \cos t)/t^2 = 1/2 - R_2(t)/t$. Puisque $R_2(t) = \cos t - 1 + t^2/2$, la fonction R_2 est continue sur [x, 2x] et on peut intégrer :

$$F(x) = \underbrace{\frac{1}{2x} \int_{x}^{2x} dt}_{=1/2} - \underbrace{\frac{1}{x} \int_{x}^{2x} \frac{R_{2}(t)}{t} dt}_{\theta(x)}$$

Il nous faut traiter le reste $\theta(x)$ de notre approximation. Avec l'inégalité de Taylor-Lagrange, on sait que

$$|\mathbf{R}_2(t)| \le \frac{t^3}{3!} \sup_{u \in [0,t]} |f^{(3)}(u)| \le \frac{t^3}{6}$$

(puisque $|f^{(3)}(t)| = |\cos t| \le 1$). Alors,

$$|\theta(x)| \le \frac{1}{x} \int_{x}^{2x} \frac{|R_2(t)|}{t^2} \le \frac{1}{6x} \int_{x}^{2x} t \, dt = \frac{x}{4} \xrightarrow[x \to 0]{} 0$$

Par conséquent, $F(x) \xrightarrow[x\to 0]{} 1/2$.

Exemple 16.11 Trouvons deux réels $(a, b) \in \mathbb{R}^2$ tels que

$$u_n = \int_0^1 (1+x^2)^{1/n} dx = a + \frac{b}{n} + \mathcal{O}(\frac{1}{n^2})$$

Écrivons pour $x \in [0,1]$, $(1+x^2)^{1/n} = e^{\frac{1}{n}\ln(1+x^2)}$. Lorsque n devient grand, le terme dans l'exponentielle tend vers 0 à x fixé. On pourrait utiliser une formule de Taylor-Young pour l'exponentielle, mais le reste s'écrirait à l'aide d'une fonction ε qui dépendrait à la fois de x et de n sur laquelle nous n'avons pas d'information suffisante pour l'intégrer. Utilisons plutôt l'inégalité de Taylor-Lagrange pour l'exponentielle à l'ordre 1 entre 0 et X:

$$e^{X} = 1 + X + R_1(X) \text{ avec } |R_1(X)| \le \frac{X^2}{2} \sup_{t \in [0, X]} e^t \le \frac{X^2}{2} e^X$$

On en tire que

$$u_n = \underbrace{\int_0^1 dx + \frac{1}{n} \underbrace{\int_0^1 \ln(1 + x^2) dx}_{h} + \underbrace{\int_0^1 R_1 \left(\frac{1}{n} \ln(1 + x^2)\right) dx}_{\theta_n}$$

On calcule b par parties

$$b = \int_0^1 \ln(1+x^2) dx = \left[x \ln(1+x^2) \right]_0^1 - 2 \int_0^1 \frac{x^2}{1+x^2} dx = \ln 2 - 2 + \int_0^1 \frac{dx}{1+x^2} = \boxed{\ln 2 - 2 + \frac{\pi}{4}}$$

et il nous reste à majorer grossièrement le reste.

$$|\theta_n| \leq \frac{1}{n^2} \int_0^1 \frac{\ln^2(1+x^2)}{2} e^{\ln(1+x^2)/n} \, \mathrm{d}x \leq \frac{1}{n^2} \int_0^1 \frac{\ln^2 2}{2} e^{\ln(2)} \leq \frac{C}{n^2}$$

730121234

Exemple 16.12 Soit une fonction f de classe \mathscr{C}^{∞} sur \mathbb{R} . On suppose qu'il existe deux constantes C, k > 0 telles que

- 1. $\forall n \in \mathbb{N}, f^{(n)}(0) = 0,$
- 2. $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, |f^{(n)}(x)| \leq Ck^n n!$

Montrons que f est la fonction nulle.

— Nous pouvons écrire une formule de Taylor à tout ordre $n: f(x) = R_n(x)$. Notre hypothèse permet de majorer $|f^{n+1}|$, utilisons donc l'inégalité de Taylor-Lagrange :

$$|f(x)| = |\mathbf{R}_n(x)| \le \frac{|x|^{n+1}}{(n+1)!} \sup_{t \in [0,x]} |f^{(n+1)}(t)| \le C|xk|^{n+1}$$

- Si $x \in]-1/k, 1/k[$, en notant K = |xk|, |K| < 1 et $\forall n \in \mathbb{N}, |f(x)| \le CK^n \xrightarrow[n \to +\infty]{} 0$. On en déduit que f est nulle sur l'intervalle]-1/k, 1/k[.
- Considérons la fonction translatée, définie sur \mathbb{R} par g(x) = f(x-1/k). Puisque f ainsi que toutes ses dérivées s'annulent en 1/k, pour tout n, $f^{(n)}(0) = 0$ et comme $g^{(n)}(x) = f^{(n)}(x-1/k)$, la fonction g vérifie les mêmes hypothèses que f. Elle est nulle sur]-1/k, 1/k [ce qui montre que f est nulle sur]-1/k, 2/k [. On recommence avec d'autres translatées pour prouver que f est nulle sur \mathbb{R} en entier.

730120616

16.6 Méthode des rectangles, Sommes de Riemann

THÉORÈME 16.41 Méthode des rectangles

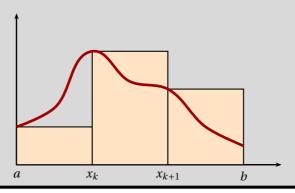
Soit une fonction f de classe \mathscr{C}^1 sur le segment [a,b]. On effectue une subdivision du segment [a,b] de pas constant h=(b-a)/n. On pose pour un entier $k \in [0,n]$, $x_k=a+k\frac{b-a}{n}=a+kh$. Posons pour un entier $n \in \mathbb{N}$,

$$R_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k)$$

On obtient une majoration de l'erreur commise en approximant l'intégrale I de la fonction f sur [a,b] par R_n :

$$|\mathbf{I} - \mathbf{R}_n| \le \frac{(b-a)^2}{2n} \mathbf{M}_1$$

où $M_1 = \|f'\|_{\infty} = \sup_{x \in [a,b]} |f'(t)|$ (la fonction f' étant continue sur un segment, elle est bornée).



Démonstration Commençons par estimer l'erreur sur un petit segment $[x_k, x_{k+1}]$:

$$\varepsilon_{n,k} = \left| \int_{x_k}^{x_{k+1}} f(t) \, \mathrm{d}t - \frac{b-a}{n} f(x_k) \right| = \left| \int_{x_k}^{x_{k+1}} \left[f(t) - f(x_k) \right] \, \mathrm{d}t \right| \le \int_{x_k}^{x_{k+1}} |f(t) - f(x_k)| \, \mathrm{d}t$$

Puisque la fonction f est de classe \mathscr{C}^1 , on peut utiliser le théorème fondamental deuxième forme. Pour $t \in [x_k, x_{k+1}]$,

$$|f(t) - f(x_k)| = \left| \int_{x_k}^t f'(t) \, \mathrm{d}t \right| \le \int_{x_k}^t |f'(t)| \, \mathrm{d}t \le M_1(t - x_k)$$

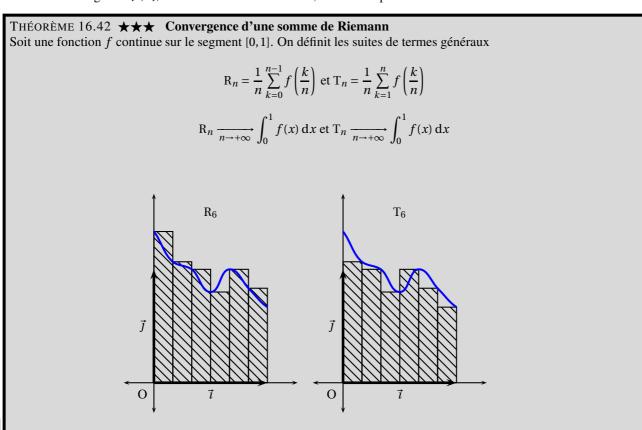
En intégrant cette inégalité, on trouve que

$$|\varepsilon_{n,k}| \le M_1 \int_{x_k}^{x_{k+1}} (t - x_k) dt = M_1 \frac{(x_{k+1} - x_k)^2}{2} = M_1 \frac{(b - a)^2}{2n^2}$$

On en déduit une majoration de l'erreur globale en sommant ces erreurs $\varepsilon_{n,k}$

$$|\mathbf{I} - \mathbf{R}_n| = \left| \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} [f(t) - f(x_k)] \right| \leq \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} |f(t) - f(x_k)| = \sum_{k=0}^{n-1} \varepsilon_k \leq \frac{(b-a)^2}{2n}$$

Dans le cas du segment [0,1], on obtient le résultat suivant, intéressant pour étudier certaines suites.



Démonstration

- Si la fonction est de classe \mathscr{C}^1 , le théorème précédent donne le résultat.
- Supposons que la fonction f est uniquement continue. On remarque que R_n représente l'intégrale de la fonction en escalier ϕ_n définie par $\forall x \in [k/n, (k+1)/n[, \phi_n(x) = f(k/n)]$ et $\phi(1) = f(1)$. Le terme T_n représente l'intégrale d'une autre fonction en escalier ψ_n définie par $\psi_n(x) = (k+1)/n$ lorsque $x \in [k/n, (k+1)/n[]$ et $\psi_n(1) = f(1)$.
- Montrons que $||f \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$. Soit ε > 0. Puisque la fonction f est continue sur le segment [0,1], elle est uniformément continue (théorème de Heine). Il existe donc $\eta > 0$ tel que $\forall (x,y) \in [0,1]^2$, $|x-y| \le \eta \implies |f(x) f(y)| \le \varepsilon$. Posons $N = E(1/\eta) + 1$. Alors pour $n \ge N$, si $x \in [0,1[$, il existe $k \in [[0,n-1]]$ tel que $k/n \le x < (k+1)/n$ et alors $|f(x) \varphi_n(x)| = |f(x) f(k/n)| \le \varepsilon$ puisque $|x k/n| \le 1/n \le \eta$. De même, on montre que $||f \psi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$.
- Alors, $|I R_n| = \left| \int_0^1 \left[f(t) \varphi_n(t) \right] dt \right| \le \int_0^1 |f(t) \varphi_n(t)| dt \le \|f \varphi_n\|_{\infty} \xrightarrow[n \to +\infty]{} 0$. La même majoration montre que $|I T_n| \xrightarrow[n \to +\infty]{} 0$.

Remarque 16.14 Plus généralement, si f est une fonction continue sur le segment [a, b], et si

$$u_n = \frac{(b-a)}{n} \sum_{k=0}^{n-1} f(\xi_k)$$

où les points ξ_k sont dans l'intervalle [a+kh, a+(k+1)h], avec $h=\frac{b-a}{n}$, on a

$$u_n \xrightarrow[n \to +\infty]{} \int_a^b f(x) dx$$

On se sert en pratique uniquement des sommes de Riemann du théorème précédent pour une fonction f continue sur le segment [0,1] pour étudier la limite de certaines suites.

no rie

PLAN 16.3: Pour étudier la limite d'une suite (u_n) faisant intervenir une somme et le groupement k/n

Essayer d'écrire u_n sous la forme $u_n = \frac{1}{n} \sum_{k=0}^{n-1} f(k/n)$ et utiliser les sommes de Riemann.

Exemple 16.13 Considérons la suite de terme général $u_n = \sum p = 0n - 1 \frac{\sqrt{n^2 + p^2}}{n^2}$. On peut faire apparaître le groupement p/n dans u_n en factorisant par n^2 dans la racine :

$$u_n = \frac{1}{n} \sum_{p=0}^{n-1} \sqrt{1 + (p/n)^2} = \frac{1}{n} \sum_{p=0}^{n-1} f(p/n)$$

où la fonction $f: \begin{cases} [0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{1+x^2} \end{cases}$ est continue sur le segment [0,1]. D'après le théorème précédent, $u_n \xrightarrow[n \to +\infty]{} I = \int_0^1 \sqrt{1+x^2} \, \mathrm{d}x$. Le plus rapide pour calculer cette intégrale consiste à intégrer par parties.

$$I = \left[x\sqrt{1+x^2}\right]_0^1 - \int_0^1 \frac{x^2+1-1}{\sqrt{x^2+1}} dx = \sqrt{2} - I + \left[\operatorname{argsh}(x)\right]_0^1$$

d'où l'on tire I = $\sqrt{2}/2 + \ln(\sqrt{2} + 1)/2$.

Exemple 16.14 Considérons la suite de terme général $u_n = \sum_{n=n}^{2n-1} \frac{1}{2p+1}$. Avec le changement d'indice k = p - n,

$$u_n = \sum_{k=0}^{n-1} \frac{1}{2(k+n)+1} = \frac{1}{2n} \sum_{k=0}^{n-1} \frac{1}{1 + (k/n) + 1/(2n)}$$

On n'obtient pas exactement une somme de Riemann, mais cela y ressemble fort! Lorsque n est grand, on se dit que le terme 1/(2n) devient négligeable. Encadrons u_n par deux sommes de Riemann :

$$\alpha_n = \frac{1}{n} \sum_{p=1}^n \frac{1}{1+p/n} = \sum_{k=0}^{n-1} \frac{1}{1+(k+1)/n} \le 2u_n \le \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1+k/n} = \beta_n$$

Les deux suites (α_n) et (β_n) sont des sommes de Riemann qui convergent vers la même limite, $I = \int_0^1 \frac{dx}{x+1} = \ln(2)$. D'après le théorème des gendarmes, on en déduit que $u_n \xrightarrow[n \to +\infty]{} \ln(2)/2$.

En résumé

Ce chapitre doit être bien maîtrisé et il sera important de faire un maximum d'exercices pour assimiler les différentes techniques nouvellement introduites. Plus particulièrement :

- 1 vous devez être à l'aise avec le calcul de primitives. Vous pourrez consulter les sections
 - ?? page ?? pour apprendre à calculer les primitives des fractions rationnelles
 - ?? page ?? pour apprendre à utiliser les règles de Bioche (qui permettent de calculer des primitives de la forme $\int F(\cos x, \sin x) dx$
 - ?? page ?? pour les primitives de la forme $\int F(sh x, ch x) dx$
 - ?? page ?? pour les primitives de fonctions contenant des racines
 - ?? page ?? pour les primitives de la forme $\int f(x^{\alpha}) \frac{dx}{x}$ et enfin ?? page ?? pour bien comprendre le cadre d'utilisation de l'intégration par parties.
- 2 Les majorations fondamentales du paragraphe 16.2.7 page 11 seront d'un usage constant aussi il faudra s'entraîner à les utiliser. Les exercices des sections ?? page ??, ?? page ?? et ?? page ?? constitueront un excellent terrain d'entraînement.
- 3 Il faudra avoir bien compris le pourquoi des formules et inégalité de Taylor et savoir utiliser, pour un problème « global », la formule de Taylor avec reste intégrale et pour un problème « local », la formule de Taylor-Young.