FICHE: INTÉGRALES DÉPENDANT D'UN PARAMÈTRE

Hypothèse de domination

On dit qu'une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

vérifie *l'hypothèse de domination* si et seulement s'il existe une fonction $\varphi: I \mapsto \mathbb{R}$ telle que :

- (H1) φ est continue par morceaux sur I;
- H2 φ est intégrable sur I;
- H3 $\forall (x,t) \in A \times I, |F(x,t)| \le \varphi(t).$

Continuité sous le signe somme

On considère une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

et on suppose que :

- H1 Pour tout $x \in A$, la fonction $t \mapsto F(x, t)$ est continue par morceaux sur I;
- H2 Pour tout $t \in I$, la fonction $x \mapsto F(x, t)$ est continue sur A;
- H3 F vérifie l'hypothèse de domination.

Alors,

- 1. $\forall x \in A$ fixé, la fonction $F_2 : t \mapsto F(x, t)$ est intégrable sur I.
- 2. La fonction

$$f: \left\{ \begin{array}{ccc} \mathbf{A} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{\mathbf{I}} \mathbf{F}(x,t) \, \mathrm{d}t \end{array} \right.$$

est continue sur A.

Dérivation sous le signe somme

On considère une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

et on suppose que :

- H1 Pour tout $x \in A$, la fonction $F_2 : t \mapsto F(x, t)$ est continue par morceaux et intégrable sur I.
- H2 Pour tout $t \in I$, la fonction $x \mapsto F(x, t)$ est de classe \mathscr{C}^1 sur A
- H3 Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial F}{\partial x}(x, t)$ est continue par morceaux sur I.
- $\fbox{H4}$ La fonction $\frac{\partial F}{\partial x}$ vérifie l'hypothèse de domination sur $A \times I$.

Alors:

1. La fonction

$$f: \left\{ \begin{array}{ccc} A & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{\mathbf{I}} \mathbf{F}(x,t) \, \mathrm{d}t \end{array} \right.$$

est définie et de classe \mathscr{C}^1 sur A.

- 2. Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial F}{\partial x}(x, t)$ est intégrable sur I.
- 3. $\forall x \in A, f'(x) = \int_{I} \frac{\partial F}{\partial x}(x, t) dt$.

Hypothèse de domination locale

On dit qu'une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

vérifie *l'hypothèse de domination locale* si et seulement si pour tout segment $K \subset A$, il existe une fonction $\phi_K : I \to \mathbb{R}$ telle que :

- (H1) ϕ_K est continue par morceaux sur I;
- (H2) φ_K est positive sur I;
- H3) ϕ_K est intégrable sur I :
- H4 $\forall (x, t) \in K \times I, |F(x, t)| \leq \varphi_K(t)$

Théorème de continuité, extension à la domination locale

On considère une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

et on suppose que :

- H1 Pour tout $x \in A$, la fonction $t \mapsto F(x, t)$ est continue par morceaux sur I;
- H2 Pour tout $t \in I$, la fonction $x \mapsto F(x, t)$ est continue sur A;
- H3 F vérifie l'hypothèse de domination locale sur A × I.

Alors,

- 1. $\forall x \in A$ fixé, la fonction $F_2 : t \mapsto F(x, t)$ est intégrable sur I.
- 2. La fonction

$$f: \left\{ \begin{array}{ccc} \mathbf{A} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{\mathbf{I}} \mathbf{F}(x,t) \, \mathrm{d}t \end{array} \right.$$

est continue sur A.

Dérivation sous le signe somme, extension à la domination locale

On considère une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

et on suppose que :

- H1 Pour tout $x \in A$, la fonction $F_2 : t \mapsto F(x, t)$ est continue par morceaux et intégrable sur I.
- Pour tout $t \in I$, la fonction $x \mapsto F(x, t)$ est de classe \mathscr{C}^1 sur A.
- H3 Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial F}{\partial x}(x, t)$ est continue par morceaux sur I.
- H4 La fonction $\frac{\partial F}{\partial x}$ vérifie l'hypothèse de domination locale sur A × I.

Alors

- 1. Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial F}{\partial x}(x, t)$ est intégrable sur I.
- 2. La fonction

$$f: \left\{ \begin{array}{ccc} \mathbf{A} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{\mathbf{I}} \mathbf{F}(x,t) \, \mathrm{d}t \end{array} \right.$$

est de classe \mathscr{C}^1 sur A.

3.
$$\forall x \in A, f'(x) = \int_{\Gamma} \frac{\partial F}{\partial x}(x, t) dt$$
.

Dérivations successives sous le signe somme

On considère une fonction

$$F: \left\{ \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & F(x,t) \end{array} \right.$$

et on suppose que :

- H1 Pour tout $t \in I$, la fonction $x \mapsto F(x, t)$ est de classe \mathscr{C}^n sur A;
- Pour tout $x \in A$, les fonctions $t \mapsto F(x, t)$, $t \mapsto \frac{\partial F}{\partial x}(x, t)$, ..., $t \mapsto \frac{\partial^{n-1} F}{\partial x^{n-1}}(x, t)$ sont continues par morceaux et intégrables sur I.
- Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial^n F}{\partial x^n}(x, t)$ est continue par morceaux sur I.
- H4 La fonction $\frac{\partial^n \mathbf{F}}{\partial x^n}$ vérifie l'hypothèse de domination (locale).

Alors:

1. La fonction

$$f: \left\{ \begin{array}{ccc} A & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{\mathbf{I}} \mathbf{F}(x,t) \, \mathrm{d}t \end{array} \right.$$

est définie et de classe \mathscr{C}^n sur A.

2. $\forall i \in [[1, n]], \forall x \in A$,

$$f^{(i)}(x) = \int_{\mathbf{I}} \frac{\partial^{i} \mathbf{F}}{\partial x^{i}}(x, t) dt$$