Chapitre

Intégration sur un intervalle

Fonctions continues par morceaux, intégrale sur un segment

Exercice 4.1

La fonction f définie sur [-1,2] par

$$f(x) = \begin{cases} x^2 & \text{si } x \in [-1, 0] \\ 1 - x & \text{si } x \in [0, 1[\\ 7 & \text{si } x = 1 \\ x^3 & \text{si } x \in [1, 2] \end{cases}$$

est-elle continue par morceaux sur [-1,2]?

Qu'en est-il si on remplace 1 - x par $\frac{1}{x}$ sur]0,1[?]

Exercice 4.2

On considère une fonction g définie sur [0,1] par g(x) = n si il existe $n \in \mathbb{N}^*$ tel que x = 1/net g(x) = 0 sinon est-elle continue par morceaux sur [0, 1]?

Exercice 4.3

Montrer que la fonction f définie sur \mathbb{R} par :

$$f(x) = \int_0^{\sin^2 x} \arcsin \sqrt{t} \, dt + \int_0^{\cos^2 x} \arccos \sqrt{t} \, dt$$

est constante et calculer sa valeur.

Exercice 4.4 \star CCP MP

On considère la fonction H définie sur]1; $+\infty$ [par H(x) = $\int_{x}^{x^2} \frac{dt}{\ln t}$.

- 1. Montrer que H est C^1 sur $[1; +\infty[$ et calculer sa dérivée.
- 2. Montrer que la fonction u définie par $u(x) = \frac{1}{\ln x} \frac{1}{x-1}$ admet une limite finie en x = 1.

3. En utilisant la fonction u de la question 2., calculer la limite en 1⁺ de la fonction H.

4.0.2 Intégrales généralisées

Exercice 4.5 \bigstar En revenant à la définition

Étudier en revenant à la définition la convergence des intégrales suivantes :

1.
$$\int_{\pi}^{+\infty} \left(2i - \frac{1}{t^2}\right) e^{it^2} dt$$
;

3.
$$\int_3^{+\infty} \frac{1}{t \ln t \ln(\ln t)} dt;$$

2.
$$\int_2^{+\infty} \frac{1}{t \ln t} dt$$
;

4.
$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} dt$$
.

Exercice 4.6

Étudier la convergence des intégrales suivantes :

1.
$$\int_0^1 \frac{dt}{(1-t)\sqrt{t}}$$

1.
$$\int_0^1 \frac{dt}{(1-t)\sqrt{t}}$$
 3. $\int_0^{+\infty} \frac{\ln t}{t^2+1} dt$

5.
$$\int_{-\infty}^{+\infty} \frac{\ln(1+t^2)}{1+t^2} dt$$

2.
$$\int_0^{+\infty} \ln(t) e^{-t} dt$$

2.
$$\int_0^{+\infty} \ln(t) e^{-t} dt$$
 4. $\int_0^{+\infty} \frac{\ln(1+t)}{t^{3/2}} dt$

6.
$$\int_0^{+\infty} \sin\left(\frac{1}{t^2}\right) dt$$

Exercice 4.7 ★

Étudier la convergence des intégrales suivantes :

1.
$$\int_0^{+\infty} \frac{t e^{-\sqrt{t}}}{1+t^2} dt$$

4.
$$\int_0^{+\infty} e^{-(\ln t)^2} dt$$

1.
$$\int_0^{+\infty} \frac{te^{-\sqrt{t}}}{1+t^2} dt$$
, 4. $\int_0^{+\infty} e^{-(\ln t)^2} dt$, 7. $\int_0^1 \frac{\ln(1-t^2)}{\sqrt{t}(\ln t)^2} dt$
2. $\int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$, 5. $\int_0^{+\infty} e^{-t \arctan t} dt$,

2.
$$\int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$$

5.
$$\int_0^{+\infty} e^{-t \arctan t} dt$$

3.
$$\int_0^{+\infty} \frac{dt}{e^t - 1}$$
, 6. $\int_0^{+\infty} \left(t + 2 - \sqrt{t^2 + 4t + 1} \right) dt \cdot 8$. $\int_0^{+\infty} \frac{\operatorname{argsh}(t)}{\operatorname{sh}(t)} dt$.

Exercice 4.8

Étudier la convergence des intégrales impropres suivantes :

1.
$$\int_0^1 \frac{\mathrm{d}t}{t^{\alpha} - t^{\beta}} \ avec \ 0 < \alpha < \beta;$$

4.
$$\int_0^1 \frac{t^{\alpha} - 1}{\ln t} dt$$
 avec $\alpha \in \mathbb{R}$;

2.
$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha} + t^{\beta}}$$
 avec $\alpha \leq \beta$;

5.
$$\int_0^{+\infty} \frac{\ln(1+t^{\alpha})}{t^2} dt \ avec \ \alpha \in \mathbb{R};$$

3.
$$\int_0^{+\infty} \frac{\ln^2 t}{(1+t^2)^{\alpha}} dt$$
 avec $\alpha \in \mathbb{R}$.

6.
$$\int_0^{+\infty} \frac{\arctan(at) - \arctan(bt)}{t^{\alpha}} dt \quad avec$$
$$\alpha \in \mathbb{R}.$$

Exercice 4.9 *

Étudier la convergence des intégrales impropres suivantes :

1.
$$\int_0^{+\infty} ((t+1)^{1/3} - t^{1/3})^{\sqrt{t}} dt$$
; $t^2 \ln\left(\frac{t}{t+1}\right) dt$;

3.
$$\int_{1}^{+\infty} t^{\alpha} \sin^2 t \, \mathrm{d}t, \quad \alpha \in$$

2.
$$\int_0^{+\infty} \left(\left(t^3 + 3at + 3b \right)^{1/3} \right) +$$

Exercice 4.10

Étudier l'intégrabilité de :

1.
$$f: t \mapsto e^{-t^2} \text{ sur } I = [0, +\infty[,$$

5.
$$f: t \mapsto \frac{e^{i\omega t}}{t^2+1} \text{ sur } I = \mathbb{R},$$

2.
$$f: t \mapsto \frac{t}{e^t - 1} \operatorname{sur} I =]0, +\infty[,$$

6.
$$f: t \mapsto \ln\left(\frac{1+t^3}{1+t^4}\right) sur I =]-1, +\infty[$$
.

3.
$$f: t \mapsto \frac{\cos(mt)}{a^2 + t^2} \text{ sur } I = [0, +\infty[(a \neq 0),$$

4.
$$f: t \mapsto \frac{1}{1-\sqrt{1-t}} sur I = [0,1],$$

Exercice 4.11

Étudier l'intégrabilité de :

1.
$$f: t \mapsto \frac{t}{\ln t} \operatorname{sur} I =]1, +\infty[$$

4.
$$f: t \mapsto \frac{\ln t}{t(1-t^2)} \text{ sur } I =]1, +\infty[,$$

2.
$$f: t \mapsto \frac{\ln^k t}{1+t^2} \text{ sur } I =]0, +\infty[,$$

4.
$$f: t \mapsto \frac{\ln t}{t(1-t^2)} \operatorname{sur} I =]1, +\infty[,$$
5. $f: t \mapsto \frac{e^{\sin t}}{t} \operatorname{sur} I = [1, +\infty[,$

3.
$$f: t \mapsto \frac{1}{e^t + t^2 e^{-t}} \operatorname{sur} I = \mathbb{R},$$

6.
$$f: t \mapsto \frac{e^{-t}}{1+t^2} \text{ sur } I = [0, +\infty]$$

Exercice 4.12

Étudier l'intégrabilité des fonctions suivantes sur l'intervalle spécifié :

1.
$$f(t) = \frac{\ln t}{t^2} \sup I = [1, +\infty[;$$

2. $f(t) = \frac{1}{\sqrt{t \ln t}} \sup_{t \to \infty} [2, +\infty[$;

4.
$$f(t) = t^2 e^{-t^2} sur I = [1, +\infty[;$$

$$\underbrace{exo_int}_{10}(10^{-t^2}) re_de_moinsx_a_x}_{\sqrt{t}(\ln t)^2} sur I = [0, 1[;$$

3.
$$f(t) = -\frac{\ln t}{\sqrt{t}} sur I =]0, 1];$$

6.
$$f(t) = \frac{\operatorname{argsh}(t)}{\operatorname{sh}(t)} \operatorname{sur} I =]0, +\infty[$$
.

Exercice 4.13

Déterminez l'intégrabilité des fonctions suivantes sur l'intervalle spécifié :

1.
$$f(t) = \frac{1}{\sqrt{\sin t}} \sup I = [0, \pi/2];$$

4.
$$f(t) = \frac{1}{\sqrt{1-t^2}} \operatorname{sur} I =]-1,1[;$$

2.
$$f(t) = \frac{\lfloor t \rfloor}{t^3} \text{ sur } I = [1, +\infty[;$$

5.
$$f(t) = \sin(1/t^2)\arctan(t^2)$$
 sur I = $[1, +\infty[$;

3.
$$f(t) = e^{-t^2} sur I = [0, +\infty[;$$

6.
$$f(t) = -\frac{\tan(\sqrt{t})}{\ln(\cos(\sqrt{t}))} \sup_{t \to 0} [1 =]0, 1].$$

Exercice 4.14

Étudier l'intégrabilité de :

1.
$$f: t \mapsto \frac{\sin(t)}{t^2} \operatorname{sur}[1, +\infty[.$$

4.
$$f(t) = \frac{1}{\sqrt{1-t^2}} \operatorname{sur} I =]-1,1[;$$

2.
$$f: t \mapsto P(t)e^{-t} \sup [0, +\infty[$$
 où P est un polynôme.

5.
$$f(t) = \sin(1/t^2)\arctan(t^2)$$
 sur I = $[1, +\infty[$:

3.
$$f: t \mapsto \frac{f(t)}{\sqrt{1-t^2}} \text{ sur } I =]-1,1[\text{ où } f: [-1,1] \mapsto \mathbb{R} \text{ une fonction continue.}$$

6.
$$f(t) = -\frac{\tan(\sqrt{t})}{\ln(\cos(\sqrt{t}))} \sup_{t \to \infty} [-1] = [0, 1].$$

Exercice 4.15

Étudier l'intégrabilité des fonctions suivantes sur l'intervalle spécifié :

1.
$$f(t) = \frac{\sin(1/t)}{\sqrt{t}} \text{ sur } I = [1, +\infty[;$$

4.
$$f(t) = \frac{1}{\sqrt{t \ln t}} \sup I = [2, +\infty[;$$

2.
$$f(t) = \frac{1}{\tan t} \sup [0, \pi/2[$$
;

5.
$$f(t) = -\frac{\ln t}{\sqrt{t}} \text{ sur } I =]0,1];$$

3.
$$f(t) = \frac{\ln t}{t^2} \text{ sur } I = [1, +\infty[;$$

6.
$$f(t) = t^2 e^{-t^2} \text{ sur } I = [1, +\infty[$$
.

Exercice 4.16 📉 🛨 Intégrales de Bertrand Soit $(\alpha, \beta) \in \mathbb{R}^2$.

- 1. Montrer que la fonction $f: t \mapsto \frac{1}{t^{\alpha}(\ln t)^{\beta}}$ est intégrable sur $[2, +\infty[$ si et seulement si $\alpha > 1$ ou alors $\alpha = 1$ et $\beta > 1$.
- 2. Montrer que la fonction $f: t \mapsto \frac{1}{t^{\alpha} |\ln t|^{\beta}}$ est intégrable sur [0, 1/2] si et seulement si α < 1 ou alors α = 1 et β > 1.

Exercice 4.17 📉 🛨

- 1. L'intégrale $\int_{-\infty}^{+\infty} \frac{1+x}{1+x^2} dx$ est-elle convergente?
- 2. Calcular $\lim_{x \to +\infty} \int_{-\pi}^{x} \frac{1+u}{1+u^2} du$. Comment expliquer ce résultat?

3. Calculer
$$\lim_{x \to +\infty} \int_{-x}^{2x} \frac{1+u}{1+u^2} du$$
.

Exercice 4.18 \bigstar Montrer que l'intégrale $\int_{1}^{+\infty} \sin(t^2) dt$ converge.

N.B: les deux questions sont indépendantes.

- 1. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x^2 4}}$ est-elle intégrable sur]2, $+\infty$ [?
- 2. Soit a un réel strictement positif.

La fonction $x \mapsto \frac{\ln x}{\sqrt{1+x^2a}}$ est-elle intégrable sur $]0,+\infty[$?

Exercice 4.20 \bigstar Centrale PC 2011

1. On considère la fonction

$$f: \left\{ \begin{array}{ccc}]0, +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{\sin x}{x + \sin x} \end{array} \right.$$

La fonction f est-elle intégrale sur \mathbb{R}_+^* ?

2. L'intégrale $\int_0^{+\infty} \frac{x}{x + \sin x} dx$ est-elle convergente?

Exercice 4.21 ★★★ X PC 2007

Montrer l'intégrabilité sur \mathbb{R}_+ de $f: x \mapsto \frac{x}{1 + x^9 \sin^2(x)}$.

1. a désigne un réel strictement supérieur à -1. En posant $x = \tan t$, montrer

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a \sin^2(t)} = \frac{\pi}{2\sqrt{1 + a}}$$

2. Donner en fonction de $\alpha > 0$, la nature de la série

$$\sum \int_0^{\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}$$

3. Même question pour

$$\sum \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1+t^{\alpha} \sin^2(t)}$$

4. Donner la nature de l'intégrale

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^\alpha \sin^2(t)}$$

Exercice 4.23 $\star \star$

La fonction $x \mapsto \int_0^x \sin(e^t) dt$ admet-elle une limite en $+\infty$?

4.0.3 Calculs d'intégrales

Exercice 4.24

Calculer les intégrales suivantes après avoir justifié leur convergence :

- 1. $\int_0^{+\infty} \frac{\arctan t}{1+t^2} dt,$
- 4. $\int_{-\infty}^{+\infty} \frac{1}{(1+t^2)^2} dt$,
- 2. $\int_{1}^{+\infty} \frac{\ln t}{t^n} dt$
- 5. $\int_0^{+\infty} t e^{-\sqrt{t}} dt$.
- 3. $\int_0^1 \frac{1}{\sqrt{t(1-t)}} dt$,
- 6. $\int_0^{+\infty} \frac{t^3 \ln t}{(1+t^4)^2} dt$.

Pour cette dernière intégrale, on pourra couper l'intégrale en deux intégrales sur [0, 1] et $[1,+\infty[$ puis faire le changement de variable $t \rightarrow 1/t$.

Exercice 4.25 🗼

Calculer les intégrales suivantes :

- 1. $\int_0^{+\infty} \frac{dt}{(t+1)(t+2)}$, 3. $\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$, 4. $\int_0^{+\infty} e^{-\sqrt{t}} dt$,

2. $\int_0^{+\infty} \frac{dt}{(e^t+1)(e^{-t}+1)}$,

5. $\int_0^{+\infty} \frac{\ln t}{(1+t)^2} dt$

Exercice 4.26

Calculer les intégrales suivantes :

- 1. $\int_0^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt,$ 3. $\int_0^1 \frac{\ln t}{\sqrt{1-t}} dt,$

- 5. $\int_0^{+\infty} \frac{\sqrt{1+x}-1}{x(1+x)} dx$,
- 2. $\int_0^{\pi/2} \sin x \ln(\sin x) dx$, 4. $\int_0^{+\infty} \frac{dx}{(x+1)^{3/2}}$, 6. $\int_0^{+\infty} \frac{(1+x)^{1/3}-1}{x(1+x)^{2/3}} dx$,

Exercice 4.27 *

1. Établir

$$I = \int_0^{+\infty} \frac{dx}{x^3 + 1} = \int_0^{+\infty} \frac{x}{x^3 + 1} dx$$

2. En déduire la valeur de I.

Exercice 4.28

- 1. À quelle condition sur $\alpha \in \mathbb{R}$ l'intégrale $I(\alpha) = \int_0^{+\infty} \frac{\arctan x}{x^{\alpha}} dx$ est-elle convergente?
- 2. Calculer I(3/2) en admettant que $\int_0^{+\infty} \frac{1}{1+t^4} dt = \frac{\pi}{2\sqrt{2}}$

Exercice 4.29 \bigstar Intégrales d'Euler

On pose

3

$$I = \int_0^{\pi/2} \ln(\sin t) dt \text{ et } J = \int_0^{\pi/2} \ln(\cos t) dt$$

1. Montrer que les intégrales I et J sont bien définies et égales.

2. Calculer I + J et en déduire les valeurs de I et J.

Exercice 4.30 \star CCP PC

Montrer que l'intégrale suivante est convergente et la calculer :

$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) \mathrm{d}t.$$

Exercice 4.31 ★ 2

Nature et calcul de l'intégrale $\int_0^{+\infty} \frac{dt}{t^3 + 1}$.

Justifier l'existence et calculer l'intégrale généralisée :

$$I = \int_{1}^{+\infty} \frac{\arctan(t)}{t^2} dt$$

Exercice 4.33 \star Classique

On considère l'intégrale :

$$I = \int_0^{+\infty} \frac{\mathrm{d}t}{t^4 + 1}$$

- 1. Justifier l'existence de I.
- 2. Factoriser dans $\mathbb{R}[X]$ le polynôme $X^4 + 1$.
- 3. Montrer que I = $\int_0^{+\infty} \frac{t^2}{t^4 + 1} dt$.
- d. En développant $\int_{0}^{+\infty} \frac{t^2 \sqrt{2}t + 1}{t^4 + 1} dt$, calculer I.

Exercice 4.34 🖈

Existence et calcul de I = $\int_{0}^{1} \frac{\ln(1-x^2)}{x^2} dx$.

On considère la fonction

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \frac{1}{\sqrt{1+t^3|\sin t|}} \end{array} \right.$$

- 1. Étudier la nature de la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} f(t) dt$;
- 2. En déduire la nature de l'intégrale $I = \int_0^{+\infty} f(t) dt$.

Exercice 4.36 $\star\star\star$

Prouver la convergence de $\int_0^1 x \left[\frac{1}{x} \right] dx$ puis calculer cette intégrale. **Exercice 4.37** $\bigstar \star \star \star$ **Centrale PC**

Soit $f[0,1] \to \mathbb{R}$ définie à partir du développement décimal propre :

$$f: 0, a_0 a_1 a_2 a_3 a_4 \dots \mapsto 0, a_1 a_0 a_2 a_3 a_4 \dots$$

- 1. Étudier la continuité de f.
- 2. Calculer $\int_0^1 f(t) dt$.

Soient a et b deux fonctions définies et continues sur \mathbb{R}_+ à valeurs dans \mathbb{R}_+ . Montrer que les solutions de l'équation différentielle (ϵ): v'-av=b sont bornées si et seulement si a et b sont intégrables sur \mathbb{R}_+ .

Exercice 4.39 ★★★ X PC 2011

Calculer

$$\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx$$

pour $a, b \in \mathbb{R}^*_{\perp}$ après avoir justifié sa convergence.

Exercice 4.40 $\star\star\star$ XMP

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ admettant une limite finie ℓ en $-\infty$ et telle que $\int_0^{+\infty} f$ existe.

Justifier l'existence, puis calculer :

$$\int_{-\infty}^{+\infty} (f(a+x) - f(b+x)) dx$$

Exercice 4.41 **

Soit $f:]0,1] \to \mathbb{R}$ continue, décroissante et positive. On pose pour $n \in \mathbb{N}^*$

$$S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

Montrer que f est intégrable sur]0,1] si, et seulement si, la suite (S_n) est convergente et que si tel est le cas

$$\int_{[0,1]} f(t) \, \mathrm{d}t = \lim_{n \to +\infty} S_n.$$

Exercice 4.42 $\star\star\star$

Pour a > 0, calculer

$$I(a) = \int_0^{+\infty} (t - \lfloor t \rfloor) e^{-at} dt.$$

Exercice 4.43 ***

Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue telle que l'intégrale suivante converge}:$

$$\int_1^{+\infty} \frac{f(t)}{t} \, \mathrm{d}t.$$

On se donne deux réels 0 < a < b.

1. Établir que pour tout x > 0

$$\int_{x}^{+\infty} \frac{f(at) - f(bt)}{t} dt = \int_{ax}^{bx} \frac{f(t)}{t} dt.$$

2. En déduire convergence et valeur de

$$\int_0^{+\infty} \frac{f(at) - f(bt)}{t} \, \mathrm{d}t.$$

Comportement asymptotique et intégrabilité

Exercice 4.44

Soit $f:[0,+\infty[$ $\to \mathbb{R}$ une fonction continue par morceaux. On suppose que f est intégrable. Montrer

$$\int_{x}^{x+1} f(t) \, \mathrm{d}t \xrightarrow[x \to +\infty]{} 0$$

Exercice 4.45 **

Soit $f:[0,+\infty[\to\mathbb{R}]$ de classe \mathscr{C}^1 .

On suppose que f^2 et f'^2 sont intégrables sur $[0, +\infty[$. Déterminer la limite de f en $+\infty$. **Exercice 4.46** $\bigstar \star \star \star$ **CCP MP**

Soit f de classe \mathscr{C}^2 sur $[0, +\infty[$ telle que f'' est intégrable sur $[0, +\infty[$ et telle que l'intégrale $\int_0^{+\infty} f(t) dt$ soit convergente.

1. Montrer que :

$$\lim_{x \to +\infty} f'(x) = 0 \quad \text{et} \quad \lim_{x \to +\infty} f(x) = 0$$

2. Étudier les séries :

$$\sum_{x \to +\infty} f(n) \quad \text{et} \quad \sum_{x \to +\infty} f'(n)$$

Exercice 4.47 ** Centrale PC

Soit $f \in \mathcal{C}^2([0, +\infty[, \mathbb{R})])$. On suppose que f et f'' sont intégrables sur $[0, +\infty[$.

- 1. Montrer que $f'(x) \to 0$ quand $x \to +\infty$.
- 2. Montrer que f.f' est intégrable.

Trouver un équivalent en $+\infty$ de

$$f(\lambda) = \int_0^1 e^{i\lambda x^2} dx.$$

Suites d'intégrales (propres ou) impropres

Exercice 4.49

Étudier les limites des suites définies par les intégrales suivantes :

$$I_n = \int_0^1 \frac{x^n}{1 + x^2} \, \mathrm{d}x$$

$$J_n = \int_0^1 x^n \arctan(1 - nx) \, \mathrm{d}x$$

Exercice 4.50

Déterminer

$$\lim_{x \to +\infty} \int_{x}^{x^{2}} \frac{\ln t}{1+t^{4}} dt$$

$$\lim_{a \to 0} \int_{0}^{1} x^{2} \sqrt{1+a^{2}x^{2}} dx$$

Exercice 4.51

Soit une fonction $f:[0,1] \rightarrow \mathbb{R}$ continue. Étudier la limite de la suite de terme général :

$$I_n = \int_0^1 f\left(\frac{x}{n}\right) dx.$$

Exercice 4.52

Déterminer un équivalent lorsque $x \to 0$ de la fonction définie par :

$$F(x) = \int_{x}^{x^2} \frac{e^t}{t} dt.$$

Exercice 4.53

Existence et calcul pour
$$n \in \mathbb{N}^*$$
 de $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2+1)^n}$.

Exercice 4.54

On pose

$$J_n = \int_0^{+\infty} \frac{dx}{(1+x^3)^{n+1}}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, J_n converge.
- Calculer I₀.
- 3. Former une relation de récurrence engageant J_n et J_{n+1} .
- 4. Établir qu'il existe A > 0 tel que

$$J_n \sim \frac{A}{\sqrt[3]{n}}$$

Exercice 4.55 \bigstar CCP PC, calcul de l'intégrale de Gauss $\int_0^{+\infty} e^{-t^2} dt$

1. Montrer que

$$\forall x \in \mathbb{R}, \quad e^x \ge 1 + x.$$

En déduire

$$\forall t \in \mathbb{R}, \quad 1 - t^2 \le e^{-t^2} \le \frac{1}{1 + t^2}.$$

2. Soit $n \in \mathbb{N}^*$. Établir l'existence des intégrales suivantes

$$I = \int_0^{+\infty} e^{-t^2} dt, \quad I_n = \int_0^1 (1 - t^2)^n dt \quad \text{et} \quad J_n = \int_0^{+\infty} \frac{1}{(1 + t^2)^n} dt$$

puis établir

$$I_n \le \frac{I}{\sqrt{n}} \le J_n.$$

3. On pose

$$W_n = \int_0^{\pi/2} \cos^n x \, \mathrm{d}x.$$

Établir

$$I_n = W_{2n+1}$$
 et $J_{n+1} = W_{2n}$.

- 4. Trouver une relation de récurrence entre W_n et W_{n+2} . En déduire la constance de la suite de terme général $u_n = (n+1)W_nW_{n+1}$.
- 5. Donner un équivalent de W_n et en déduire la valeur de I.

Exercice 4.56 \bigstar Calcul de l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin x}{x} dx$

- 1. Soit $f:[a,b] \to \mathbb{R}$ de classe \mathscr{C}^1 . Déterminer $\lim_{n\to+\infty} \int_a^b f(t) \sin(nt) dt$.
- 2. Montrer que la fonction $g:[0,\pi/2] \to \mathbb{R}$ définie par

$$g(x) = \begin{cases} \frac{1}{\sin x} - \frac{1}{x} & \text{si } 0 < x \le \pi/2\\ 0 & \text{sinon} \end{cases}$$

est de classe \mathscr{C}^1 .

- 3. Justifier que $I_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{\sin t} dt$ est convergente puis montrer que (I_n) est constante.
- 4. En déduire la valeur de $\int_0^{+\infty} \frac{\sin x}{x} dx$.

Exercice 4.57 *

Pour tout $n \in \mathbb{N}$, on note $I_n = \int_0^{+\infty} e^{-x} \sin^{2n} x dx$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'intégrale I_n est convergente.
- 2. Calculer I_n pour tout $n \in \mathbb{N}$.
- 3. Soit $A_n = \prod_{k=1}^n \left(1 \frac{1}{2k}\right)$. Montrer que pour tout $n \in \mathbb{N}^*$, on a $0 < I_n < A_n$.
- 4. Étudier la limite de (A_n) et en déduire celle de (I_n) .

Exercice 4.58

On considère l'intégrale $\int_0^1 \frac{\ln x}{1+x^2} dx$.

1. Montrer que cette intégrale est convergente. On note I sa valeur.

- 2. Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale $I_n = \int_0^1 x^{2n} \ln x \, dx$ est convergente et la calculer.
- 3. Justifier que l'on a :

$$\forall n \in \mathbb{N}^*, \quad \forall x \in [0,1], \quad \frac{1}{1+x^2} = \sum_{k=0}^n (-1)^k x^{2k} + \frac{(-1)^{n+1} x^{2n+2}}{1+x^2}.$$

4. Déduire des questions précédentes que $I = \sum_{k=0}^{+\infty} \frac{(-1)^{k+1}}{(2k+1)^2}$.

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{\text{arctan}(n+x)}{\sqrt{x}(n+x)} dx$.

- 1. Montrer que I_n est bien définie.
- 2. Étudier la convergence de $(I_n)_{n \in \mathbb{N}}$.
- 3. Calcular $\int_0^{+\infty} \frac{dx}{\sqrt{x(n+x)}}$
- 4. En déduire par encadrement un équivalent de I_n.

Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^*$, on pose :

$$I_n(x) = \int_0^{+\infty} \frac{dt}{(t^2 + x^2)^n}.$$

- 1. Prouver que pour tout $(n; x) \in \mathbb{N}^* \times \mathbb{R}^*$, $I_n(x)$ est bien définie.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, I_n est dérivable sur \mathbb{R}_+ et calculer sa dérivée.
- 3. En déduire $\int_0^{+\infty} \frac{dt}{(t^2+1)^3}$.

Premier exercice:

Soit P un polynôme de $\mathbb{R}_5[X]$.

On pose I(P) =
$$\int_{-1}^{1} \frac{P(x)}{\sqrt{1-x^2}} dx$$
.

- 1. Donner une primitive de $x \mapsto \frac{1}{\sqrt{1-x^2}}$ sur]-1,1[. En déduire l'existence de I(1) et le
- 2. (a) Soit k entier entre 0 et 5. Justifier que $I(X^k)$ converge absolument
 - (b) Justifier l'intégrabilité de $x \mapsto \frac{P(x)}{\sqrt{1-x^2}}$.
- 3. On suppose qu'il existe trois réels a,b,c tels que

$$I(P) = aP\left(-\frac{\sqrt{3}}{2}\right) + bP(0) + cP\left(\frac{\sqrt{3}}{2}\right).$$

- (a) Calculer I(X). En déduire deux relations entre a, b et c.
- (b) Montrer que $I(X^2) = \frac{\pi}{2}$ et déterminer a, b et c.
- 4. Soit $n \in [2, 5]$. Montrer que $I(X^n) = \frac{n-1}{n}I(X^{n-2})$.
- 5. Conclure.

Exercice 4.62 ** CCP MP

On pose

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^n} \text{ pour } n \in \mathbb{N}, \quad n \ge 2.$$

1. Déterminer une suite de fonctions (f_n) telle que

$$I_n = \int_0^1 f_n(t) \, \mathrm{d}t.$$

2. Déterminer deux réels a et b tels que

$$I_n = a + \frac{b}{n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right).$$

Exercice 4.63 ** * Centrale MP

1. Soit $f \in \mathcal{C}^1([a,b],\mathbb{R})$. Déterminer les limites des suites

$$\left(\int_{a}^{b} f(t)\sin(nt) dt\right)_{n \in \mathbb{N}} \quad \text{et} \quad \left(\int_{a}^{b} f(t)\cos(nt) dt\right)_{n \in \mathbb{N}}.$$

2. Calculer, pour $n \in \mathbb{N}^*$,

$$\int_0^{\pi/2} \frac{\sin(2nt)\cos t}{\sin t} dt$$

(on procédera par récurrence)

3. En déduire

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

4. Étudier la limite puis un équivalent de

$$\left(\int_0^{\pi/2} \ln(2\sin(t/2))\cos(nt) \, \mathrm{d}t\right)_{n \in \mathbb{N}}.$$

4.0.6 Intégration et structure euclidienne

Soit E l'espace vectoriel des fonctions réelles continues de carré intégrable sur I. On note $(f \mid g) = \int_{I} f g$ le produit scalaire usuel sur E et $\|.\|_{2}$ la norme associée à ce produit scalaire. On dit qu'une suite (f_{n}) de fonctions de E converge en moyenne quadratique vers une fonction f de E si et seulement si $N_{2}(f_{n} - f)$

1. Prouver les inégalités

$$\forall (f,g) \in E^2, \left| \left(f \mid g \right) \right| \leq \int_{\Gamma} \left| f g \right| \leq N_2(f) N_2(g)..$$

2. En déduire que si (f_n) et (g_n) sont deux suites de fonctions de E convergeant en moyenne quadratique vers f et g alors $((f_n | g_n)) \xrightarrow[n \to +\infty]{} (f | g)$.

Exercice 4.65

On considère E l'espace vectoriel des fonctions réelles continues de carré intégrable sur $\mathbb R$. On note $(f \mid g) = \int_{\mathbb R} f g$ le produit scalaire usuel sur E. Montrer que le sous-espace $\mathscr P$ des fonctions paires de carré intégrables sur $\mathbb R$ et le sous-espace $\mathscr I$ des fonctions impaires de carré intégrable sur $\mathbb R$ sont supplémentaires orthogonaux.

Exercice 4.66

On rappelle l'intégrale de Gauss :

$$\int_{-\infty}^{\infty} e^{-t^2} \, \mathrm{d}t = \sqrt{\pi}.$$

- 1. Montrer que l'intégrale $I_n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^n e^{-\frac{t^2}{2}} dt$ converge.
- 2. Que vaut I_{2p+1} ?
- 3. Trouver une relation de récurrence entre I_{2p+2} et I_{2p} et finir le calcul des I_p en admettant que $I_0 = 1$.
- 4. Soit

$$\varphi : \left\{ \begin{array}{ccc} \mathbb{R}_n[\mathbf{X}] \times \mathbb{R}_n[\mathbf{X}] & \longrightarrow & \mathbb{R} \\ (\mathbf{P}, \mathbf{Q}) & \longmapsto & \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathbf{P}(t) \mathbf{Q}(t) e^{-\frac{t^2}{2}} \, \mathrm{d}t \end{array} \right.$$

Montrer que φ est un produit scalaire.

5. Construire une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire en appliquant le procédé d'orthonormalisation de Gram-Schmidt à $(1,X,X^2)$.

Soit a et b deux réels tels que a<b.

1. Soit *h* une fonction continue et positive de [a, b] dans \mathbb{R} .

Démontrer que
$$\int_a^b h(x) dx = 0 \Longrightarrow h = 0$$
.

2. Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On pose,
$$\forall (f,g) \in E^2$$
, $(f|g) = \int_a^b f(x)g(x)dx$.

Démontrer que l'on définit ainsi un produit scalaire sur E.

3. Majorer $\int_0^1 \sqrt{x}e^{-x} dx$ en utilisant l'inégalité de Cauchy-Schwarz.

Exercice 4.68 * CCP MP

Soit E l'espace vectoriel des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} .

- 1. Démontrer que $(f \mid g) = \frac{1}{2\pi} \int_0^{2\pi} f(t) g(t) dt$ définit un produit scalaire sur E.
- 2. Soit F le sous-espace vectoriel engendré par $f: x \mapsto \cos x$ et $g: x \mapsto \cos (2x)$.

Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2 x$.

4.0.7 Intégrales fonction d'une borne, fonctions définies par une intégrale

Exercice 4.69 $\star\star$ Type Mines

Déterminer

$$\lim_{x \to 0} \int_{x}^{3x} \frac{\sin t}{t} dt \quad \text{et} \quad \lim_{x \to 0} \int_{x}^{3x} \frac{\sin t}{t^{2}} dt.$$

Exercice 4.70 *** Centrale 2009, Exponentielle intégrale

On pose

$$f(x) = \int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t.$$

- 1. Quel est le domaine de définition de *f* ?
- 2. Donner un équivalent de f(x) aux bornes du domaine de définition.
- 3. Calculer $\int_0^{+\infty} f(x) dx$.

Exercice 4.71 $\bigstar \star$ Type Mines

On introduit

$$f: x \mapsto \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}.$$

- 1. Montrer que f est définie sur $\mathbb{R}_+^* \setminus \{1\}$.
- 2. Montrer que f est prolongeable en une fonction (toujours notée f) \mathscr{C}^1 sur \mathbb{R}_+^* .
- 3. Déterminer la position locale de la courbe de f par rapport à sa tangente en 1.
- 4. Déterminer les limites aux bornes de f et tracer sa courbe représentative.
- 5. Calculer $\int_0^1 \frac{1-t}{\ln t} dt$.

4.0.8 Étude de fonctions définies par une intégrale à paramètre

Exercice 4.72 \star Transformée de Fourier, Mines 2007

Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction continue et intégrable sur \mathbb{R} . On définit sa transformée de Fourier par

$$\hat{f}: x \mapsto \int_{\mathbb{R}} f(t) e^{itx} \, \mathrm{d}t.$$

- 1. Montrer que \hat{f} est définie et continue sur \mathbb{R} .
- 2. Dans cette question, on prend $f: t \mapsto e^{-t^2/2}$.
 - (a) Montrer que \hat{f} est de classe \mathscr{C}^{∞} sur \mathbb{R} .
 - (b) Calculer \hat{f} (On rappelle que que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$).
- 3. On suppose de plus que $t \mapsto tf(t)$ est intégrable sur \mathbb{R} . Montrer que \hat{f} est de classe \mathscr{C}^1 sur \mathbb{R} .

Exercice 4.73 💮 🛨 📉 Transformée de Laplace

On note E l'ensemble des fonctions $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$ telles que $\lim_{t \to +\infty} e^{-ty} f(t) = 0$ pour tout y > 0. Pour $f \in E$, on définit sa transformée de Laplace par

$$\mathcal{L}(f)(x) = \int_0^{+\infty} f(t) e^{-tx} dt.$$

- 1. Montrer que pour tout a > 0 et tout $f \in E$, la fonction $t \mapsto f(t)e^{-at}$ est intégrable sur \mathbb{R}_+ .
- 2. Montrer que pour tout $f \in E$, $\mathcal{L}(f)$ est définie et continue sur \mathbb{R}_{+}^{*} .
- 3. Montrer que E est un \mathbb{R} -espace vectoriel et que L est linéaire de E dans $\mathscr{C}^0(\mathbb{R}_+^*,\mathbb{R})$
- 4. Calculer la transformée de Laplace de chacune des fonctions suivantes :

(a)
$$f_1: t \mapsto 1$$
; (b) $f_2: t \mapsto e^{-at}$, (c) $f_3: t \mapsto t^n$, $n \in (d)$ $f_4: t \mapsto \cos(\omega t)$ $a > 0$; \mathbb{N} ;

- 5. On suppose que $f \in E$ est de classe \mathscr{C}^2 et que f' et f'' appartiennent à E. Trouver une relation entre $\mathscr{L}(f)$ et $\mathscr{L}(f'')$.
- 6. Retrouver la solution de l'équation différentielle y'' + y = 1 telle que y(0) = 2 et y'(0) = 0. On admettra que l'application \mathcal{L} est injective.

Exercice 4.74 🖈

On considère $f: x \mapsto \int_0^1 \frac{t^2}{\sqrt{1+x^4t^2}} dt$.

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. En déduire $\lim_{x\to 0} \int_0^1 \frac{t^2}{\sqrt{1+x^4t^2}} dt$.

Exercice 4.75 $\star \star$ Mines 2005

On pose

$$f(x) = \int_0^{+\infty} e^{-xt} \arctan t \, dt.$$

- 1. Déterminer le domaine de définition I de f.
- 2. La fonction f est elle continue sur I.
- 3. Donner un équivalent de f(x) quand $x \to 0$.
- 4. Donner un équivalent de f(x) quand $x \to +\infty$.

Exercice 4.76

Montrer que $f: x \mapsto \int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+itx)}$ est définie et continue sur \mathbb{R} .

On considère $f: x \mapsto \int_0^{\pi} \sin(t \sin x) dt$.

- 1. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. En déduire $\lim_{x\to 0} \frac{1}{r} \int_0^{\pi} \sin(t \sin x) dt$.

Exercice 4.78

- 1. Montrer que $\int_0^1 \frac{t^x 1}{\ln t} dt$ est convergente pour tout $x \in]-1, +\infty[$. Indication 4.0: On pourra distinguer les cas x < 0, x = 0 et x > 0.
- 2. Montrer que $f: x \mapsto \int_0^1 \frac{t^x 1}{\ln t} dt$ est de classe \mathscr{C}^1 sur $]-1, +\infty[$ et calculer f'.
- 3. En déduire une expression explicite de f.

Exercice 4.79

- 1. Montrer que $f: x \mapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. En déduire une expression explicite de f.

Exercice 4.80

- 1. Déterminer l'ensemble de définition D de $f: x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$;
- 2. Montrer que f est \mathscr{C}^{∞} sur D \ $\{0\}$.

Exercice 4.81

On se propose de calculer pour tout $n \in \mathbb{N}^*$ et pour tout x > 0:

$$f_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(x+t^2)^n}.$$

- 1. Calculer $f_1(x)$.
- 2. Soit a > 0. Montrer que f_n est de classe \mathscr{C}^1 sur $[a, +\infty]$.
- 3. Calculer $f'_n(x)$ en fonction de $f_{n+1}(x)$.

4. En déduire f_n .

Exercice 4.82

Montrer que $f: x \mapsto \int_0^1 \sin(tx) dt \operatorname{est} \mathscr{C}^{\infty} \operatorname{sur} \mathbb{R}$. **Exercice 4.83**

Soit

$$f: x \mapsto \int_0^{+\infty} \frac{1}{1 + x^3 + t^3} \, \mathrm{d}t.$$

- 1. Montrer que f est définie sur \mathbb{R}_+ :
- 2. À l'aide du changement de variable u = 1/t, calculer f(0);
- 3. Montrer que f est continue et décroissante;
- 4. Déterminer $\lim_{+\infty} f$.

Exercice 4.84

Soit

$$f: x \mapsto \int_0^{+\infty} \frac{e^{-tx^2}}{1+t^3} \, \mathrm{d}t.$$

- 1. Montrer que f est définie sur \mathbb{R} .
- 2. Grâce au changement de variable t = 1/u, calculer f(0).
- 3. Étudier les variations de f sur son domaine de définition.
- 4. Étudier la limite de f en $+\infty$.

Exercice 4.85

Posons

$$f: x \mapsto \int_0^{\pi/2} \frac{\cos t}{t+x} dt$$
.

- 1. Montrer que f est définie et continue sur \mathbb{R}_{+}^{*} . Étudier les variations de f.
- 2. Déterminer les limites de f aux bornes de son domaine de définition.
- 3. Déterminer un équivalent de f en 0^+ puis en $+\infty$.

Exercice 4.86

On introduit

$$f: x \mapsto \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

- 1. Montrer que f est définie sur \mathbb{R}_{+}^{*} .
- 2. Montrer que f est continue sur son domaine de définition.
- 3. Calculer f(x) + f(x+1) pour tout $x \in \mathbb{R}^*$.
- 4. Donner un équivalent de f en 0^+ et trouver la limite de f en $+\infty$.

Exercice 4.87

Montrer que la fonction définie par $f(x) = \int_0^{+\infty} \frac{\sin(xt)}{t(1+t^2)} dt$ est définie et continue sur \mathbb{R} .

:58

Exercice 4.88

On considère la fonction définie par :

$$F(x) = \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2xt) \, \mathrm{d}t$$

- 1. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. Vérifier que $\forall x \in \mathbb{R}$, F'(x) = 2xF(x).
- 3. En déduire que

$$\int_0^{+\infty} e^{-t^2} \cosh(2xt) dt = \frac{\sqrt{\pi}}{2} e^{x^2}$$

Exercice 4.89 🖈

On pose $f(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t(t+1)}} dt$.

- 1. Montrer que f est continue sur $[0, +\infty[$
- 2. Montrer que f est de classe \mathscr{C}^1 sur $]0,+\infty[$ et dresser son tableau de variations en calculant f(0) et la limite de f en $+\infty$.
- 3. Trouver un équivalent simple de f en $+\infty$.
- 4. Étudier la dérivabilité de f en 0.

On pose : $\forall x \in]0; +\infty[$ et $\forall t \in]0; +\infty[$, $f(x, t) = e^{-t}t^{x-1}$.

1. Démontrer que, $\forall x \in [0, +\infty[$, la fonction $t \mapsto f(x, t)$ est intégrable sur $[0, +\infty[$.

On pose alors, $\forall x \in]0; +\infty[$, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 2. Démontrer que, $\forall x \in]0; +\infty[, \Gamma(x+1) = x\Gamma(x).$
- 3. Démontrer que Γ est de classe C^1 sur $]0; +\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

Exercice 4.91 \bigstar Oral CCP MP

- 1. Énoncer le théorème de dérivation sous le signe intégrale.
- 2. Démontrer que la fonction $f: x \mapsto \int_{0}^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe C^1 sur \mathbb{R} .
- 3. (a) Trouver une équation différentielle linéaire (E) d'ordre 1 dont f est solution.
 - (b) Résoudre (E).

Exercice 4.92 ★★ Mines PC 2016

On considère $f(x) = \int_0^1 \frac{t^x(t-1)}{\ln(t)} dt$.

1. Donner le domaine de définition D de f.

- 2. Montrer que f est de classe \mathscr{C}^1 sur D.
- 3. Calculer f.

Exercice 4.93 ** Centrale PC 2016

On introduit la fonction f donnée là où elle est définie par :

$$f(x) = \int_0^{+\infty} \frac{\sin(xt)}{t(t^2+1)} dt.$$

- 1. Montrer que f est \mathcal{C}^2 sur un intervalle à déterminer.
- 2. Trouver une équation différentielle satisfaite par f.
- 3. En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$

Exercice 4.94 $\star\star\star$ Centrale PC 2016

On introduit la fonction f donnée là où elle est définie par :

$$f(x) = \int_0^{+\infty} \frac{\sin(xt)}{t(t^2+1)} dt.$$

- 1. Montrer que f est \mathscr{C}^2 sur un intervalle à déterminer.
- 2. Trouver une équation différentielle satisfaite par f.
- 3. En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$

Exercice 4.95 \bigstar Mines 2016

Trouver les fonction continues sur \mathbb{R} telles que : $\forall x \in \mathbb{R}$, $f(x) = 2 \int_0^x f(t) \cos(x - t) dt$.

Exercice 4.96 ★ CCP 2016

On pose $f(x) = \int_0^{+\infty} \frac{dt}{1 + x^3 + t^3}$.

- 1. Montrer que f est définie et décroissante sur \mathbb{R}_+ .
- 2. Calculer la limite de f en $+\infty$.

4.0.9 Exercices de synthèse

Exercice 4.97 $\star\star$ Centrale 2000

Pour tout $P \in \mathbb{R}[X]$ et tout $x \in \mathbb{R}$, on pose

[F(P)]
$$(x) = e^{4x} \int_{2x}^{+\infty} P(t)e^{-2t} dt$$
.

- 1. Vérifier l'existence de F(P)(x).
- 2. Calculer avec Python $F(X^k)$ pour $k \in [0, 5]$.
- 3. Montrer que F est un endomorphisme de $\mathbb{R}[X]$.

- 4. Trouver une équation différentielle vérifiée par Y = F(P). En déduire que F est un automorphisme de $\mathbb{R}[X]$.
- 5. Quelles sont les valeurs propres de F.

Exercice 4.98 ** Centrale PC 2016

Soient a et b deux fonctions définies et continues sur \mathbb{R}_+ à valeurs dans \mathbb{R}_+ . Montrer que les solutions de l'équation différentielle (ϵ) : v' - av = b sont bornées si et seulement si a et b sont intégrables sur \mathbb{R}_+ .

Intégration sur un intervalle quelconque

Exercice 4.99 \star X ESPCI PC 2012, X ESPCI PC 2014

Mots-clés : inégalité de Hardy

Soit $f \in \mathcal{C}^1([1, +\infty[, \mathbb{R})])$. On suppose que $(f')^2$ est intégrable sur $[1, +\infty[$. Montrer que $t \mapsto \frac{f(t)^2}{t^2}$ est intégrable sur $[1, +\infty[$.

Exercice 4.100 ★ X ESPCI PC 2015

Mots-clés : inégalité de Hardy Soit $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$.

- 1. On suppose $(f')^2$ intégrable sur \mathbb{R}_+ . Montrer que $t\mapsto \frac{f(t)^2}{t^2}$ est intégrable sur $[1,+\infty[$.
- 2. Déterminer la limite de $\frac{f(t)^2}{t}$ quand $t \to +\infty$.

Exercice 4.101 ★ X ESPCI PC 2015

Soit $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$ telle que $\int_0^{+\infty} (f'(t)^2 + t^2 f(t)^2) dt$ existe. Montrer que \hat{f}^2 est intégrable sur $\mathbb{R}_{+} \text{ et que } \int_{0}^{+\infty} f(t)^{2} dt \leq 2 \sqrt{\int_{0}^{+\infty} f'(t)^{2} dt} \sqrt{\int_{0}^{+\infty} t^{2} f(t)^{2} dt}.$ **Exercice 4.102** $\bigstar \text{ ENS PC 2014}$

Mots-clés: inégalité de Hölder, inégalité de Prékopa et Leindler 2015 476 X ESPCI PC

- 1. Soit $(p,q) \in]1, +\infty[^2$ tel que $\frac{1}{n} + \frac{1}{a} = 1$. Soit $(u,v) \in (\mathbb{R}_+)^2$. Montrer: $uv \leq \frac{u^p}{n} + \frac{v^q}{a}$.
- 2. Soient u, v dans $\mathscr{C}^0(\mathbb{R}, \mathbb{R}_+)$ à support compact. Soit $0 \in [0, 1]$. Montrer que $\int_{-\infty}^{+\infty} u^0 v^{1-\theta} d\theta \le$ $(\int_{-\infty}^{+\infty} u)^{\theta} (\int_{-\infty}^{+\infty} v)^{1-\theta}.$
- 3. Soient u, v, w dans $\mathscr{C}^0(\mathbb{R}, \mathbb{R}_+^*)$ intégrables. Soit $\theta \in [0, 1]$. On suppose que $\forall (x, y) \in \mathbb{R}^2$, $w(\theta x + (1 \theta) y) \ge u(x)^{\theta} v(y)^{1 \theta}$. Montrer que $\int_{-\infty}^{+\infty} w \ge (\int_{-\infty}^{+\infty} u)^{\theta} \hat{A} \S(\int_{-\infty}^{+\infty} v)^{1 \theta}$.

Exercice 4.103 \star X ENS PSI 2015

Mots-clés : fonctions convexes, inégalité de Jensen

Soient $a, b \in \mathbb{R}$ et I = a, b. La fonction $\Phi: I \to \mathbb{R}$ est dite convexe si $\forall (x, y) \in I^2$, $\forall \lambda \in I$ $[0,1], \quad \Phi(\lambda x + (1-\lambda)y) \leq \lambda \Phi(x) + (1-\lambda)\Phi(y).$ Soit $\Phi: I \subseteq \mathbb{R}^{M \times M}$

- 1. Montrer que Φ est convexe si et seulement si pour tout $(s, t, u) \in I^3$ tel que s < t < u,
- 2. On suppose que Φ est dérivable sur I. Montrer que Φ est convexe si et seulement si Φ' est croissante sur I.

- 3. Montrer que si Φ est convexe alors Φ est continue sur I.
- 4. On suppose Φ convexe. Soient $f: \mathbb{R} \to \mathbb{R}_+$ et $g: \mathbb{R} \to I$ continues telles que $\int_{\mathbb{R}} f = 1$ et les fonctions $(\Phi \circ g) f$ et fg soient intégrables. Montrer que $\Phi(\int_{\mathbb{D}} fg) \leq \int_{\mathbb{D}} (\Phi \circ g) f$.

Exercice 4.104 ★ ENSAM PSI 2016

Soit $f \in \mathcal{C}^2(\mathbb{R},\mathbb{R})$ On suppose f et f'' de carrés intégrables. Montrer que f' est de carré intégrables. grable, et que $[\int_{\mathbb{D}} (f')^2]^2 \le [\int_{\mathbb{D}} f^2] [\int_{\mathbb{D}} (f'')^2]$. Étudier le cas d'égalité.

Exercice 4.105 \star X ESPCI PC 2009

Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ intégrable sur \mathbb{R} . Déterminer $\lim_{a \to +\infty} \int_{-\infty}^{+\infty} |f(t+a) - f(t)| dt$.

Exercice 4.106 ★ **CCP PC 2010**

Soient E l'ensemble des fonctions polynomiales réelles de degré $\leq n$ et, pour $k \in \{0, ..., n\}$, $\mu_k \colon t \mapsto t^k$.

- 1. Soient $x \in \mathbb{R}$ et $P \in E$. Montrer que $\int_{-\infty}^{x} P(t)e^{t} dt$ converge. Si P \in E, on pose L(P): P $\mapsto e^{-x} \int_{-\infty}^{x} P(t)e^{t} dt$.
- 2. Si $k \in \{0, ..., n-1\}$, montrer que $L(\mu_{k+1}) = \mu_{k+1} (k+1)L(\mu_k)$. En déduire $L(\mu_k) = \mu_{k+1} (k+1)L(\mu_k)$ $(-1)^k k! \sum_{i=0}^k (-1)^j \frac{\mu_j}{i!}$.
- 3. Déterminer les valeurs propres de L. L'endomorphisme L est-il diagonalisable?

Exercice 4.107 ★ **ENS PC 2013**

Soit $u \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telle que u et u' soient de carré intégrable sur \mathbb{R} .

- 1. Montrer que $u(x) \to 0$ quand $x \to +\infty$ et quand $x \to -\infty$.
- 2. Si $x \in \mathbb{R}$, montrer que $(u(x))^2 \le 2 \left(\int_{-\infty}^{+\infty} u^2 \int_{-\infty}^{+\infty} u'^2 \right)^{1/2}$.

Exercice 4.108 \star X ESPCI PC 2013

Mots-clés : fonction décroissante et intégrable sur \mathbb{R}_+

Soit $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$ décroissante et intégrable sur \mathbb{R}_+ . Montrer que $x f(x) \to 0$ quand $x \to +\infty$.

Exercice 4.109 \star X ESPCI PC 2015

Soit $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+)$. On suppose f intégrable sur \mathbb{R}_+ . Montrer l'existence d'une suite de réels positifs $(x_n)_{n\geq 0}$ telle que $x_n \to +\infty$ et $x_n f(x_n) \to 0$.

Exercice 4.110 \star Mines Ponts PSI 2014

Mots-clés : fonction décroissante et intégrable sur \mathbb{R}_+

Soit $f: [0, +\infty[\to \mathbb{R} \text{ telle que } \int_0^{+\infty} f(x) dx \text{ soit convergente.}]$

- 1. Si f(x) admet une limite ℓ quand x tend vers $+\infty$, que vaut ℓ ?
- 2. Donner un exemple où f(x) n'a pas de limite quand x tend vers $+\infty$.
- 3. Montrer que si f est décroissante, alors x f(x) tend vers 0 quand x tend vers $+\infty$.

Exercice 4.111 \star Centrale PSI 2015

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe \mathscr{C}^1 et décroissante. Soit $\alpha > -1$. On suppose que la fonction $t \mapsto$ $t^{\alpha} f(t)$ est intégrable sur $[1, +\infty[$.

- 1. Montrer que les fonctions $t \mapsto t^{\alpha} f(t)$ et $t \mapsto t^{\alpha+1} f'(t)$ sont intégrables sur \mathbb{R}_{+}^{*} .
- 2. En déduire que $\int_0^{+\infty} t^{\alpha+1} f'(t) dt = -(\alpha+1) \int_0^{+\infty} t^{\alpha} f(t) dt$.

Exercice 4.112 \bigstar Mines Ponts PC 2014

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ intégrable. On suppose qu'il existe M > 0 tel que $\forall x \in \mathbb{R}_+, f_x^{x+1} f'^2 \leq M$. Montrer que $f(x) \to 0$ quand $x \to +\infty$.

Exercice 4.113 \star X ESPCI PC 2013, Mines Ponts PC 2014

Mots-clés : théorème de Cesàro pour les fonctions

Soit $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+)$ intégrable sur \mathbb{R}_+ . Montrer que $\frac{1}{x} \int_0^x t f(t) dt \to 0$ quand $x \to +\infty$.

Exercice 4.114 * X ENS PSI 2014

Mots-clés : continuité uniforme des fonctions \mathscr{C}^1 à dérivée dans L^2

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 . On suppose que $\int_{\mathbb{R}} [f'(t)]^2 dt < +\infty$. Montrer que f est uniformément continue.

Exercice 4.115 \star ENSAM PSI 2014

Soit $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+)$ et F sa primitive nulle en 0. Montrer que la convergence d'une des deux intégrales ci-dessous implique celle de l'autre, et comparer leurs valeurs : $\int_0^{+\infty} \frac{f(t)}{1+t} dt$ et $\int_0^{+\infty} \frac{F(t)}{(1+t)^2} dt$.

Exercice 4.116 \star Centrale PSI 2014

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue par morceaux et intégrable.

1. Peut-on dire que $\lim_{x\to+\infty} f(x) = 0$?

2. Montrer que $g: x \in \mathbb{R}^* \mapsto f(x - \frac{1}{x}) \in \mathbb{R}$ est intégrable et que $\int_{\mathbb{R}^*} g = \int_{\mathbb{R}} f$.

Exercice 4.117 \star X ESPCI PC 2014

Mots-clés : intégrale de Frullani

Soient $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$ intégrable et $(a, b) \in \mathbb{R}^2$ avec 0 < a < b. Calculer $\int_0^{+\infty} \frac{f(ax) - f(bx)}{x} dx$.

Exercice 4.118 ★ **ENS PC 2015**

Soit sgn la fonction de [-1,1] dans \mathbb{R} qui à x associe 1 si x > 0, -1 si x < 0 et 0 si x = 0. Soit $f \in \mathcal{C}^0([-1,1],\mathbb{R}_+)$ telle que f(0) = 0 et $\forall x \in [-1,1] \setminus \{\hat{0}\}, \quad \hat{f}(x) > \hat{0}$. Montrer l'équivalence entre:

(i) $\int_{-1}^{1} \frac{1}{f} = +\infty$

(ii) il existe une suite $(u_n)_{n\geq 0}$ d'éléments de $\mathscr{C}^1([-1,1],\mathbb{R})$ telle que (u_n) converge simplement vers la fonction sgn et telle que $\int_{-1}^{1} f u_n'^2 \to 0$ quand $n \to +\infty$. **Exercice 4.119** \bigstar **Mines Ponts PSI 2015**

Soient $k \in [0,1[$ et $f: \mathbb{R}_+ \to \mathbb{R}_+^*$ continue par morceaux telle que $\frac{f(x+1)}{f(x)} \to k$ quand $x \to +\infty$.

- 1. Montrer que f est intégrable.
- 2. Peut-on généraliser le résultat?

Exercice 4.120 \bigstar Mines Ponts PC 2015

Mots-clés : somme de Riemann d'une fonction intégrable monotone

Soit $f:]0,1[\to \mathbb{R}$ continue, monotone et intégrable. Montrer que $\frac{1}{n}\sum_{k=1}^{n-1}f(\frac{k}{n}) \underset{n\to+\infty}{\text{loss}} \int_0^1f(\frac{k}{n}) dt$

Exercice 4.121 ★ ENSAM PSI 2015

Mots-clés : produit de convolution

Soient f et g deux fonctions continues de carré intégrable sur R,

1. Déterminer l'ensemble de définition de $f * g: x \mapsto \int_{-\infty}^{+\infty} f(x-t)g(t)dt$.

- 2. Montrer que f * g est continue sur son ensemble de définition.
- 3. Étudier les limites de f * g aux bornes de son domaine de définition.

Soit $f \in \mathcal{C}^0(\mathbb{R}^*_+, \mathbb{R}^*_+)$. On suppose que f^2 est intégrable sur [0,1].

- 1. Montrer que f est intégrable sur [0,1].
- 2. On suppose que $\forall x \in \mathbb{R}_+^*$, $x \int_0^x f^2 = 2 \int_0^x f$. On pose $g: x \mapsto \int_0^x f$ et $h: x \mapsto \int_0^x f^2$.
 - (a) Trouver une équation différentielle vérifiée par g.
 - (b) En déduire g puis f.

Exercice 4.123 \bigstar Centrale PC 2015

Soit $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ T-périodique et non identiquement nulle. On pose F: $x \mapsto \int_0^x f$, $M = \frac{1}{T} \int_0^T f$ et, pour $n \in \mathbb{N}$, $u_n = \int_{n^T}^{(n+1)T} \frac{|f(t)|}{t} dt$.

- 1. Étudier la convergence de la série de terme général u_n . La fonction $t \mapsto \frac{|f(t)|}{t}$ est-elle intégrable sur $[T, +\infty[$?
- 2. On suppose M \neq 0. Montrer que F(x) ~ Mx quand x $\rightarrow +\infty$. L'intégrale $\int_{T}^{+\infty} \frac{f(t)}{t} dt$ est-elle convergente?
- 3. On suppose que M = 0. Montrer que l'intégrale $\int_{T}^{+\infty} \frac{f(t)}{t} dt$ est convergente.

4.1.1 Intégrales de fonctions numériques positives particulières

Exercice 4.124 \bigstar Mines Ponts PC 2009, Mines Ponts PC 2014

Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{t^2}{(1+t^4)^n} dt$.

- 1. Trouver une relation entre I_n et I_{n+1} .
- 2. Déterminer un équivalent de I_n . Nature de $\sum I_n$?

Exercice 4.125 ★ CCP PC 2006

Soit, pour $n \ge 1$: $I_n = \int_0^{+\infty} \frac{dx}{(1+x^4)^n}$

- 1. Démontrer l'existence de I_n et trouver sa limite quand $n \to \infty$.
- 2. En posant $u = \frac{1}{x}$, montrer que $I_1 = \frac{1}{2} \int_0^{+\infty} \frac{1+u^2}{1+u^4} du$. Puis, en posant $v = u \frac{1}{u}$, calculer
- Calculer I_n.

Exercice 4.126 \bigstar Mines Ponts PC 2013

Pour $n \in \mathbb{N}^*$, existence et calcul de $\int_0^{\pi/2} \frac{\sin^2(nx)}{\tan x} dx$. **Exercice 4.127** \bigstar **X ESPCI PC 2014**

Étudier l'intégrabilité sur sur]0,1[et sur $]2,+\infty[$ de $t\mapsto \frac{1}{\ln t}$

Exercice 4.128 \star X ESPCI PC 2015

Soit $f: t \mapsto |\ln t|^{\alpha}$ avec $\alpha \in \mathbb{R}$. Étudier l'intégrabilité de f sur $]0, \frac{1}{2}], [\frac{1}{2}, 1[,]1, 2]$ et $[2, +\infty[$.

Exercice 4.129 \bigstar Centrale PC 2009, Mines Ponts PSI 2014 Existence et calcul de $I = \int_0^{\pi/2} \ln(\sin t) dt$. Exercice 4.130 ** RMS 2010 1003 Télécom Sud Paris PSI Étudier la convergence de $\int_0^{+\infty} \ln(\frac{x}{1-e^{-x}}) \frac{e^{ax}}{x} dx$ pour $a \in \mathbb{R}$. Nature de $\int_0^{+\infty} \frac{\arctan x}{x} \ln(\frac{2+x}{1+x}) dx$. Exercice 4.132 \bigstar TPE PC 2006 Existence et valeur de $\int_1^{+\infty} \left[\arcsin\left(\frac{1}{x}\right) - \frac{1}{x}\right] dx$.

Exercice 4.133 \bigstar TPE PC 2011 RMS 2011 1140 Télécom Sud Paris PC Convergence et calcul de $\int_0^{+\infty} \lfloor x \rfloor e^{-x} dx$. **Exercice 4.135** \bigstar **CCP PSI 2015** Existence et calcul de $\int_0^{+\infty} xe^{-\lfloor x\rfloor} dx$. Existence et calcul de $\int_0^{+\infty} \frac{t}{\cosh^2 t} dt$.

Exercice 4.137 CCP PC 2013 Existence et calcul de $\int_1^{+\infty} \frac{\arcsin(1/\sqrt{t})}{t} dt$.

Exercice 4.138 \bigstar $^{t^2}$ TPE EIVP PC 2013 Existence et calcul de $\int_0^{+\infty} (\frac{\arctan t}{t})^2 dt$.

Exercice 4.139 \bigstar CCP PC 2007 Pour $(\alpha, \beta) \in \mathbb{N}^2$, étudier l'intégrabilité de $x \mapsto x^{\beta} e^{-\alpha x}$ sur \mathbb{R}^* . **Exercice 4.140** ★ **CCP PC 2014** Nature de $\int_0^1 |\ln t|^b (1-t)^a dt$ pour $(a,b) \in \mathbb{R}^2$? Exercice 4.141 \star RMS 2014 1251 Écoles des Mines PSI Soit I = $\int_0^1 \frac{dx}{(x^2-x^3)^{1/3}}$. 1. Justifier l'existence de L 2. Montrer que I = $\frac{3}{2} \int_0^{+\infty} \frac{du}{u^2 - u + 1}$. Calculer I. Exercice 4.142 \bigstar RMS 2014 1252 Écoles des Mines PSI Existence et calcul de $I = \int_0^{+\infty} \ln(\frac{t^2+1}{t^2}) dt$.

Exercice 4.143 \bigstar ICNA PSI 2014 Trouver une condition nécessaire et suffisante de convergence de l'intégrale $\int_0^{+\infty} x^{\alpha} (1-e^{-it\sqrt{x}}) dx$, $où \alpha \in \mathbb{R}$. Convergence et calcul de I = $\int_0^1 \frac{1-3x^2}{\sqrt{x(1-x^2)}} \arcsin \frac{x-1}{x+1} dx$. Exercice 4.145 \star Mines Ponts PSI 2014, Centrale PC 2015 Existence et calcul de $\int_0^1 \frac{x}{(1+x^2)\sqrt{1-x^4}} dx$. Exercice 4.146 \bigstar Mines Ponts PC 2014 Nature et calcul de $\int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)\sqrt{4+x^2}}$ Exercice 4.147 Mines Ponts PC 2009, Mines Ponts PSI 2014 Soit $f: x \mapsto \int_x^{+\infty} \frac{\mathrm{d}t}{t(x^{\sqrt{t}}-1)}$

PC PC

PC PC PC PC

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 3. Montrer que f est intégrable sur \mathbb{R}_+^* .

Exercice 4.148 \star Mines Ponts PC 2009

Soit $f: x \mapsto \int_x^{x^2} \frac{dt}{\ln t}$

- 1. Montrer que f est définie sur]0,1[. Déterminer les limites de f quand $x \to 0^+$ et quand $x \to 1^-$.
- 2. Calculer $\int_0^1 \frac{t-1}{\ln t} dt$.

Exercice 4.149 ★ X ESPCI PC 2014

Soit $f: x \in \mathbb{R}_+ \mapsto \int_1^x \frac{e^t}{t} dt$.

- 1. Déterminer un développement asymptotique à deux termes de f en zéro.
- 2. Étudier la concavité de f. Tracer le graphe de f.

Exercice 4.150 \star Mines Ponts PSI 2013

Établir la convergence, puis déterminer la valeur, de $I(x) = \int_0^x \sqrt{\frac{1}{\sin(2t)} - 1} dt$.

Exercice 4.151 \star Centrale PC 2014

Soit $f: x \in \mathbb{R} \mapsto \int_{x}^{+\infty} e^{-t^2} dt$.

- 1. Donner un équivalent de f(x) quand $x \to +\infty$.
- 2. Donner un équivalent de $R_n = \sum_{k=n}^{+\infty} e^{-k^2}$ quand $n \to +\infty$.

Exercice 4.152 \star CCP PSI 2014

Pour $x \in]0,\pi[$, on pose $g(x) = \frac{1}{x} \int_0^x \frac{dt}{1+\cos t}$. Prolonger g par continuité sur $[0,\pi[$. La fonction g^2 est-elle intégrable sur $[0,\pi[$?

Exercice 4.153 \star Centrale PC 2015

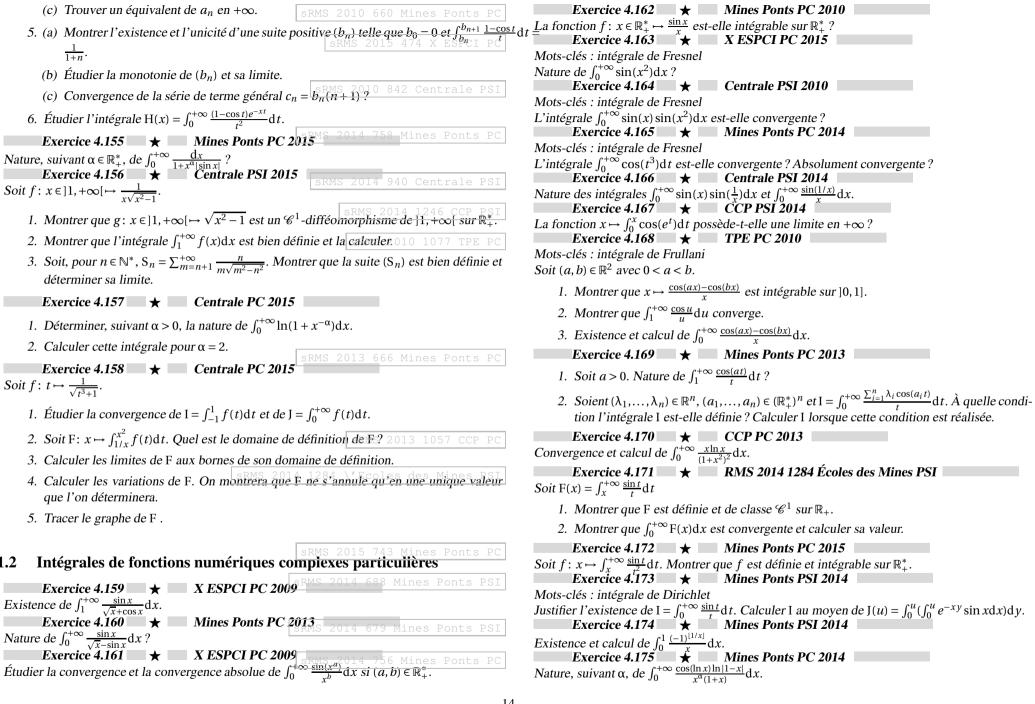
Soit $f: t \in]0,1] \mapsto \frac{1}{t^2} - \frac{1}{(\arctan t)^2}$.

- 1. Montrer que f est intégrable sur]0,1].
- 2. Déterminer un équivalent de $x \mapsto \int_x^1 \frac{dt}{(\arctan t)^2} dt$ quand $x \to 0^+$.

Exercice 4.154 ★ Centrale PC 2015

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^x \frac{1-\cos t}{t^2} dt$ et $G(x) = \int_0^x \frac{1-\cos t}{t} dt$.

- 1. Montrer que F et G sont de classe \mathscr{C}^1 sur \mathbb{R} . Calculer la valeur de leur dérivée en zéro.
- 2. Montrer que F admet une limite finie en $+\infty$ (on admet dans la suite que cette limite vaut $\frac{\pi}{2}$).
- 3. Montrer que G tend vers $+\infty$ en $+\infty$.
- 4. (a) Montrer l'existence et l'unicité d'une suite $(a_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}$, $F(a_n) = \frac{1}{1+n}$.
- (b) Étudier la monotonie de (a_n) , et sa convergence.



4.1.3 Intégrales à paramètre

Exercice 4.176 \bigstar CCP PSI 2010 SRMS 2014 942 Central Soient $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ bornée et $g: x \mapsto \int_{-\infty}^{+\infty} e^{-|t|} f(x-t) dt$.

- 1. Montrer que g est définie sur \mathbb{R} et de classe \mathbb{C}^2 .
 - 2. Exprimer g'' en fonction de g et de f.

Exercice 4.177 ★ Mines Ponts PSI 2014

Soit E l'ensemble des $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$ 2π -périodiques. Pour $f \in \mathbb{E}$, on pose $||f|| = \frac{1}{2\pi} \int_0^{2\pi} |f(t)| dt$ et $G(f): x \mapsto \int_0^{+\infty} e^{-t} f(x+t) dt$.

- 1. Montrer que G est un endomorphisme continu. Est-ce un automorphisme?
- 2. Déterminer les valeurs propres et vecteurs propres de G.

Exercice 4.178 \star Mines Ponts PC 2014

Soit E l'ensemble des fonctions bornées de $\mathscr{C}^0(\mathbb{R}_+,\mathbb{R})$. Soit $g \in E$. Le but de cet exercice est de déterminer s'il existe $f \in E$ telle que $\forall x \in \mathbb{R}_+$, $f(x) = g(x) + \int_0^{+\infty} \frac{\operatorname{th}(f(xt))}{4+t^2} \mathrm{d}t$.

- 1. Si $f \in E$, montrer que $T(f): x \mapsto \int_0^{+\infty} \frac{\operatorname{th}(f(xt))}{4+t^2} dt$ est dans E.
- 2. Soit (f_n) définie par $f_0: x \mapsto 0$ et, pour $n \in \mathbb{N}$, $f_{n+1} = g + T(f_n)$. Etudier cette suite de fonctions et conclure.
- 3. Montrer que f est unique (cette question ne figurait pas dans l'énoncé publié).

Exercice 4.179 🖈 Centrale PSI 2014

Soient f une fonction continue intégrable sur \mathbb{R} et $F(x) = \int_{-\infty}^{+\infty} f(t) \cos(\pi x t) dt$.

- 1. Donner le domaine de définition D de F. La fonction F est elle continue sur D?
- 2. Hypothèses sur f pour que F soit de classe \mathscr{C}^{∞} sur D?
- 3. On suppose que f est identiquement nulle sauf sur le segment [0, A] avec A > 0. Montrer que F est développable en série entière.

Exercice 4.180 \bigstar ENS PC 2015

Soit $s \in]0,1[$. Pour $(a,x,y,t) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*_+ \times \mathbb{R}$, on pose $P(a,x,y,t) = \frac{ay^{2s}}{((x^{\perp}t)^2+y^2)^{s+1/2}} \cdot \text{ESPCI PC}$

- 1. Montrer, pour $(a, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*_+$, l'intégrabilité sur \mathbb{R} de $t \mapsto P(a, x, y, t)$.
- 2. Montrer l'existence d'un unique $c \in \mathbb{R}$ tel que $\forall (x, y) \in \mathbb{R} \times \mathbb{R}_+^*$, $\int_{-\infty}^{+\infty} P(c, x, y, t) dt = 1$.
- 3. Soient $\varepsilon > 0$ et $x \in \mathbb{R}$. Montrer que $\lim_{y \to 0^+} \int_{\mathbb{R} \setminus \{x = \varepsilon, x + \varepsilon\}} P(c, x, y, t) dt = 0$.
- 4. Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ bornée. Pour $(x, y) \in \mathbb{R} \times \mathbb{R}_+^*$, on pose $u(x, y) = \int_{-\infty}^{+\infty} P(c, x, y, t) f(t) dt$. Soit $x \in \mathbb{R}$. Montrer que $y \mapsto u(x, y)$ a, quand $y \to 0^+$, une limite dans \mathbb{R} que l'on déterminera.

4.1.4 Intégrales classiques, transformées de Laplace et de Fourier

Exercice 4.181 \star Centrale PSI 2014

Mots-clés : fonction Γ d'Euler

Soit s un nombre complexe de partie réelle > 0.

- 1. Montrer que $\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt$ converge.
- 2. Montrer que $I_n(s) = \int_0^n t^{s-1} (1 \frac{t}{n})^n dt$ converge. Quelle est la limite de $I_n(s)$ lorsque n tend vers $+\infty$?
- 3. Montrer que $\lim_{n\to+\infty} \frac{n! n^s}{s(s+1)\cdots(s+n)} = \Gamma(s)$.

Exercice 4.182 \star Centrale PC 2014

Mots-clés : fonction Γ d'Euler

Soient G: $x \mapsto \int_1^{+\infty} t^{x-1} e^{-t} dt$ et F: $x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+x)!}$

- 1. Montrer que G est définie et de classe \mathscr{C}^{∞} sur \mathbb{R} . Déterminer une relation entre G(x+1) et G(x).
- 2. Montrer que F est de classe \mathscr{C}^{∞} sur $\mathbb{R} \setminus \mathbb{Z}_{-}$. Déterminer une relation entre F(x+1) et F(x).
- 3. Soit $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$. Montrer que Γ est définie sur \mathbb{R}_+^* et que $\Gamma = F + G$.

Exercice 4.183 ★ **CCP PC 2015**

Mots-clés: fonctions Γ d'Euler et ζ de Riemann Soit $I = \int_0^{+\infty} \frac{t^3}{e^t - 1} dt$.

- 1. Montrer que I existe.
- 2. On définit $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. Montrer que Γ est définie sur \mathbb{R}_+^* . Trouver une relation entre $\Gamma(x+1)$ et $\Gamma(x)$. En déduire $\Gamma(n)$ pour tout $n \in \mathbb{N}^*$.
- 3. On pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ et on donne $\zeta(4) = \frac{\pi^4}{90}$. Préciser le domaine de définition de ζ .
- 4. Pour quels $t \in \mathbb{R}$ a-t-on la relation $\frac{t^3}{e^t-1} = \sum_{n=0}^{+\infty} t^3 e^{-(n+1)t}$?
- 5. Calculer I.
- 6. On pose $F(x) = \int_0^{+\infty} \frac{t^{x-1}}{e^t 1} dt$. Déterminer le domaine de définition de F. Exprimer F à l'aide de ζ et de I. Étudier la continuité de F.

Mots-clés : intégrale de Gauss

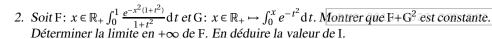
Soient $f: x \mapsto \int_0^x e^{-t^2} dt$ et $g: x \mapsto \int_0^{\pi/4} e^{-x^2/\cos^2 u} du$.

- 1. Montrer que $f^2 + g$ est constante.
- 2. En déduire la valeur de l'intégrale de Gauss.

Exercice 4.185 ★ CCP PSI 2014

Mots-clés : intégrale de Gauss

1. Montrer que I = $\int_0^{+\infty} e^{-t^2} dt$ est convergente.



Exercice 4.186 ★ **IIE PC 2006**

Mots-clés : intégrale de Dirichlet

sRMS 2010 1021 ENSAM PSI

On considère la fonction $\varphi \colon t \mapsto \int_0^{\pi} e^{-t \sin \theta} \cos(t \cos \theta) d\theta$.

1. Montrer que $\varphi \in \mathscr{C}^1([0, +\infty[, \mathbb{R}).$

sRMS 2013 918 Centrale PC

- 2. Montrer que, pour t > 0: $\varphi'(t) = -2\frac{\sin t}{t}$.
- 3. Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ et calculer sa valeur.

Exercice 4.187 \bigstar Mines Ponts PC 2013

Mots-clés : intégrale de Dirichlet

On pose, pour $n \in \mathbb{N}$, $u_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt$ et $v_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin t} dt$.

- 1. Montrer que la suite (v_n) est constante.
- 2. Montrer que $u_n v_n \rightarrow 0$.

sRMS 2014 687 Mines Ponts PSI

3. En déduire que $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.

Exercice 4.188 \star Centrale PSI 2010, TPE PSI 2010

Mots-clés : transformée de Laplace, intégrale de Dirichlet

Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$.

- 1. Déterminer le domaine de définition D de f. La fonction f est-elle de classe \mathscr{C}^2 sur D?
- 2. Trouver une équation différentielle satisfaite par f.
- 3. Soit $g: x \mapsto \int_0^{+\infty} \frac{\sin t}{t+x} dt$. Montrer que $g = f \sin \mathbb{R}_+^*$.
- 4. En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Exercice 4.189 \star CCP PSI 2014

Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{1+t}} dt$.

- 1. Déterminer le domaine de définition de f; étudier la continuité et la dérivabilité de f.
- 2. Trouver une équation différentielle dont f est solution.
- 3. Étudier la limite de f en $+\infty$ et en 0. Donner un équivalent de f en $\hat{0}$.

Exercice 4.190 \star CCP PSI 2010, CCP PSI 2011, TPE EIVP PSI 2013

sRMS 2013 684 Mines Ponts PC

Mots-clés: transformée de Laplace du sinus cardinal

Soit $f: y \mapsto \int_0^{+\infty} \frac{e^{-ty} \sin t}{t} dt$.

1. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer f'(y) pour $y \in \mathbb{R}_+^*$.

- 2. Déterminer la limite de f en $+\infty$.
- 3. En déduire une expression de f.

Exercice 4.191 ★ **CCP PSI 2010**

Mots-clés : transformée de Laplace du sinus cardinal

Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-t} \sin(xt)}{t} dt$. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} . Calculer f(x).

Exercice 4.192 \star ENSAM PSI 2010

Mots-clés : transformée de Laplace du sinus cardinal

Soit F: $x \in \mathbb{R}_+^* \mapsto \int_0^{+\infty} \frac{e^{-t} \sin(xt)}{t} dt$. Étudier F en 0^+ et en $+\infty$.

Mots-clés : intégrale de Dirichlet Soit $f: x \mapsto \int_0^{+\infty} \frac{\sin(tx)}{t} e^{-t} dt$.

- 1. Existence, domaine de définition, continuité. La fonction f est-elle de classe \mathscr{C}^1 ? Calculer f' et f.
- 2. Soit $g: x \mapsto \int_0^{+\infty} \frac{\sin t}{t} e^{-tx} dt$. Justifier l'existence de g. Exprimer g en fonction de f. En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Exercice 4.194 \bigstar Mines Ponts PSI 2014

Mots-clés : intégrale de Dirichlet Soit $F(t) = \int_0^{+\infty} \frac{\sin x}{x} e^{-xt} dx$.

- 1. Montrer que F est définie sur $[0, +\infty[$.
- 2. Montrer que F est de classe \mathscr{C}^1 sur $]0, +\infty[$ et déterminer F'(t). En déduire une expression de F(t) sur $]0, +\infty[$.
- 3. Montrer que F est continue en 0. En déduire la valeur de $\int_0^{+\infty} \frac{\sin x}{x} dx$.

Exercice 4.195 ★ **CCP PC 2014**

Mots-clés : intégrale de Dirichlet, transformée de Laplace

Soit $f: x \in \mathbb{R}_+ \mapsto \int_0^{+\infty} \frac{1-\cos t}{t^2} e^{-xt} dt$.

- 1. Justifier l'existence de f(x) sur \mathbb{R}_+ . Montrer que f est continue sur \mathbb{R}_+ et de classe \mathscr{C}^2 sur \mathbb{R}_+^* .
- 2. Déterminer la limite de f(x) et de f'(x) quand $x \to +\infty$.
- 3. Montrer que $f'(x) = \ln x \frac{1}{2}\ln(1+x^2)$ pour $x \in \mathbb{R}_+^*$.
- 4. Exprimer $I = \int_0^{+\infty} \frac{\sin t}{t} dt$ en fonction de f(0). En déduire la valeur de I.

Exercice 4.196 ★ Navale PSI 2010

Montrer que $f: x \mapsto \int_0^{+\infty} \frac{e^{-t} \sin(xt)}{\sqrt{t}} dt$ est définie sur \mathbb{R}_+^* et à valeurs dans \mathbb{R}_+^* .

Exercice 4.197 \bigstar Mines Ponts PC 2013

Mots-clés : transformée de Laplace

Soit $f: x \in \mathbb{R}_+^* \mapsto \int_0^{+\infty} \frac{e^{-xt}}{x+t} dt$. Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R}_+^* . Donner un équivalent de f en 0^+ et en $+\infty$.

Soit F: $x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt$.

1. Montrer que le domaine de définition de F est \mathbb{R}_+^* .

2	Mantuan	arra E	ant	maaitiria	-4	décroissante
/	wionirer	me r	esi	positive.	e_{I}	aecroissame

- 3. Montrer que, pour $x \in \mathbb{R}^*_+$, $F(x) \le \int_0^{+\infty} e^{-xt} dt$. En déduire la limite de F en $+\infty$.
- 4. Montrer que F est de classe \mathscr{C}^1 et que $\forall x \in \mathbb{R}_+^*$, $F(x) F'(x) = \frac{1}{x}$. En déduire que F est de classe \mathscr{C}^{∞} .
- 5. Montrer $\forall x \in \mathbb{R}_+^*$, $F(x) = e^x \int_x^{+\infty} \frac{e^{-t}}{t} dt$. En déduire la limite de F en 0^+ .
- 6. Montrer que $F(x) \underset{x\to 0^+}{\sim} -\ln(x)$.

Exercice 4.199 \bigstar Mines Ponts PC 2013

Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{x^2+t^2} dt$.

- 1. Déterminer le domaine de définition de f. Étudier la continuité et la dérivabilité de \hat{f} .
- 2. Donner un équivalent de f aux bornes.

Exercice 4.200 \star Centrale PC 2013

Soit $f: x \mapsto \int_0^{+\infty} \frac{te^{-t}}{t+x} dt$.

- 1. Montrer que f est définie et continue sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* .
- 2. Montrer que f n'est pas dérivable à droite en 0.
- 3. Calculer $\int_0^{+\infty} te^{-t} dt$.
- 4. Montrer que $\forall x \in \mathbb{R}_+^*$, $0 \le 1 xf(x) \le \frac{2}{x}$. En déduire un équivalent de f en $+\infty$.

Mots-clés : constante d'Euler, transformée de Laplace On pose $f: x \mapsto \int_0^{+\infty} (\ln t) e^{-xt} dt$.

- 1. Montrer que f est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 2. Montrer que f est solution de $y' + \frac{1}{x}y = -\frac{1}{x^2}$
- 3. Exprimer f à l'aide de $C = \int_0^{+\infty} (\ln t) e^{-t} dt$.

Exercice 4.202 ★ **X ENS PSI 2014**

Mots-clés : transformée de Fourier, fonctions de classe \mathscr{C}^{∞} à support compact On note E l'ensemble des applications f de classe \mathscr{C}^{∞} de \mathbb{R} dans \mathbb{C} pour lesquelles il existe \mathbb{M} > 0 tel que f est nulle sur $\mathbb{R} \setminus [-M,M]$. On pose pour $f \in \mathbb{E}$ et $t \in \mathbb{R}$, $F(f)(t) = \int_{-\infty}^{+\infty} f(x)e^{-ixt} dx$.

- 1. Montrer que F(f) est définie et dérivable. Calculer F(f)'.
- 2. Montrer que pour tout $N \in \mathbb{N}$, il existe $C_N \in \mathbb{R}_+$ tel que $\forall t \in \mathbb{R}^*$, $|F(f)(t)| \leq C_N |t|^{-N}$ (on exprimera C_N en fonction de f et N). On pose pour $f \in E$ et $x \in \mathbb{R}$, $D(f)(x) = \int_{-\infty}^{+\infty} |z| F(f) \frac{|z|}{|z|} e^{ixz} \frac{dz}{dz}$ 352 X ESPCI PC
- 3. Montrer que D(f) est bien définie sur \mathbb{R} . Soit $g \in E$; montrer que $\int_{-\infty}^{+\infty} D(f)(x) \overline{g}(x) dx =$ $\int_{-\infty}^{+\infty} |z| F(f)(z) \overline{F}(g)(z) dz.$
- 4. En déduire que $\int_{-\infty}^{+\infty} D(f)(x)xf'(x)dx = 0$.
- 5. Montrer que la condition $\forall x \in \mathbb{R}$, $\varphi''(x) + D(\varphi)(\cos x)\sin x = 0$ entraîne que φ est constante.

Exercice 4.203 \bigstar TPE PSI 2014

Mots-clés : transformée de Fourier

On rappelle que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$. Pour $z \in \mathbb{C}$, on pose $f(z) = \int_{-\infty}^{+\infty} e^{-t^2} e^{zt} dt$.

- 1. Montrer que f est bien définie.
- 2. Si z = x + iy, montrer que $f(z) = e^{x^2/4} e^{ixy/2} \int_{-\infty}^{+\infty} e^{-u^2} e^{iyu} du$.
- 3. Montrer que $y \mapsto \int_{-\infty}^{+\infty} e^{-u^2} e^{iyu} du$ est de classe \mathscr{C}^1 sur \mathbb{R} , solution d'une équation différentielle d'ordre 1. Résoudre cette équation et en déduire une expression de f(z), $z \in \mathbb{C}$.

Exercice 4.204 \star X ENS PSI 2015

Soit $y: t \in \mathbb{R} \mapsto e^{-t^2/2}$.

- 1. Montrer que, pour tout $z \in \mathbb{C}$, $\int_{-\infty}^{+\infty} e^{-itz} \gamma(t) dt$ est convergente. Pour $z \in \mathbb{C}$, on pose $F(z) = \int_{-\infty}^{+\infty} e^{-itz} \gamma(t) dt$.
- 2. Donner un développement en série entière de F en 0 et préciser le rayon de convergence.
- 3. Montrer que l'application $x \in \mathbb{R} \to F(ix)\gamma(x)$ est constante et préciser la valeur de cette constante.
- 4. Donner alors une expression de F.

Exercice 4.205 ★ **ENS PC 2015**

Mots-clés : transformée de Fourier Soient $\alpha > 0$ et $f: x \mapsto \sum_{k \in \mathbb{Z}} \exp(-\frac{(x-k)^2}{2\alpha})$.

- 1. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. Déterminer les coefficients de Fourier de f.
- 3. Soit $\Phi: y \mapsto \int_{-\infty}^{+\infty} \exp(-\frac{u^2}{2\alpha}) e^{-iuy} du$. Trouver une équation différentielle du premier ordre vérifiée par Φ . En déduire une expression de $\Phi(u)$.

Autres intégrales à paramètre de fonctions particulières 4.1.5

Exercice 4.206 \star X ESPCI PC 2012 Soit $f: x \mapsto \int_0^1 x e^{-xt \ln t} dt$.

- 1. Montrer que f est définie sur \mathbb{R} . Étudier sa régularité.
- 2. Déterminer le développement en série entière de f au voisinage de zéro.

Exercice 4.207 \star X ESPCI PC 2012

Déterminer la limite de $F(x) = \int_0^{+\infty} \frac{\sin(xt^2)}{1+t^2} dt$ quand x tend vers $+\infty$. **Exercice 4.208** \bigstar Mines Ponts PC 2009

Exercice 4.208
$$\bigstar$$
 Mines Ponts PC 2009

Soient I = $\int_0^{+\infty} \frac{\sqrt{x}}{x^2 + 1} dx$, K = $\int_0^{+\infty} \frac{\sqrt{x}}{(x^2 + 1)^2} dx$ et J(a) = $\int_0^{+\infty} \frac{\sqrt{x}}{x^2 + a^2} dx$ pour a > 0. Calculer I, puis calculer K à l'aide de I(a).

On pose F: $x \mapsto \int_0^{+\infty} e^{-t^2} \cos(2xt) dt$.

- 1. Montrer que F est définie sur ℝ.
- 2. Montrer que F est développable en série entière sur R.

Exercice 4.210 ★ **CCP PSI 2014**

Soit $f: x \mapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$.

- 1. Déterminer le domaine de définition de f.
- 2. Montrer que f est de classe \mathscr{C}^{∞} .
- 3. Montrer que f admet un développement en série entière de f en 0; le déterminer.

Soit $f: x \mapsto \int_0^{+\infty} e^{-t^2/2} \cos(xt) dt$. Montrer que f est de classe \mathscr{C}^1 et expliciter f'. En déduire f(x).

Exercice 4.212 ★ **CCP PSI 2015**

Soit $I_n = \int_0^{+\infty} t^{2n} e^{-t^2} dt$ pour $n \in \mathbb{N}$.

- 1. Justifier la définition de I_n . Trouver une relation entre I_n en I_n En déduire la valeur $de I_n$.
- 2. Donner une expression simplifiée de $F(x) = \int_0^{+\infty} \cos(xt) e^{\frac{-x^2 MS}{t}} \frac{2012 \ 1334 \ CCP \ PC}{dt}$

Exercice 4.213 **★** X ESPCI PC 2013

Soit G: $x \in \mathbb{R}_+ \mapsto \int_0^{+\infty} e^{-t^2} \sin(xt) dt$. Montrer que G est bien définie et que G est à valeurs dans \mathbb{R}_{+} .

Exercice 4.214 ★ **CCP PC 2011**

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^1 \frac{dt}{1+t^x}$.

- 1. Montrer que F est définie sur \mathbb{R} et que $\forall x \in \mathbb{R}$, F(x) + F(-x) = 1. Calculer F(k) pour $k \in \{-2, -1, 0, 1, 2\}.$
- 2. Déterminer les limites de F en $-\infty$ et $+\infty$. Donner un équivalent de F(x) 1 quand xtend vers $+\infty$.
- 3. Montrer que F est convexe sur \mathbb{R}_- et concave sur \mathbb{R}_+ .

2014

Soit F: $x \mapsto \int_0^{+\infty} \frac{\arctan(tx)}{t(1+t^2)} dt$.

- 1. Déterminer le domaine de définition D de F.
- 2. Montrer que F est \mathscr{C}^1 sur \mathbb{R} .
- 3. Exprimer F sur D.
- 4. En déduire la valeur de $\int_0^{+\infty} \left(\frac{\arctan t}{t}\right)^2 dt$.

Exercice 4.216 \star CCP PC 2006, TPE EIVP PC 2013, ENSAM PSI 2014

Soit F: $x \mapsto \int_0^{+\infty} \frac{\arctan(xt)}{1+t^2} dt$.

1. Déterminer le domaine de définition de F.

- 2. Étudier la dérivabilité de F. Donner une expression de F'.
 - 3. Donner une expression simple de F.

Exercice 4.217 \star Centrale PC 2015

Soient $\varphi: x \mapsto \frac{\sin x}{x}$ et, pour $n \in \mathbb{N}^*$, $f_n: x \mapsto \int_0^n \frac{\cos(xt)}{1+x^2} dt$.

- 1. Montrer que φ se prolonge en une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} .
- 2. Montrer que f_n est de classe \mathscr{C}^2 et solution d'une équation différentielle du deuxième ordre. En déduire une expression de f_n .
- 3. Soient $h \in \mathcal{C}^1([a,b],\mathbb{R})$ avec $(a,b) \in \mathbb{R}^2$ et a < b, et I: $c \in \mathbb{R}_+ \mapsto \int_a^{+\infty} h(t) \sin(ct) dt$. Montrer que $I(c) \to 0$ quand $c \to +\infty$.
- 4. Montrer que $x \mapsto \int_0^x \frac{\sin t}{t} dt$ a une limite ℓ quand $x \to +\infty$.
- 5. En déduire une expression de $F(x) = \int_0^{+\infty} \frac{\cos(xt)}{1+t^2} dt$.

Exercice 4.218 \star TPE PSI 2015

Montrer après avoir justifié l'existence des intégrales que $\int_0^{+\infty} \frac{1}{1+t^2} \arctan \frac{x}{t} dt = \int_0^x \frac{\ln t}{1-t^2} dt$.

Exercice 4.219 \bigstar CCP PC 2012

Soit $f: x \mapsto \int_0^{\pi/2} (\sin t)^x dt$.

- 1. Montrer que f est définie et continue sur $]-1,+\infty[$.
- 2. Calculer f(1). Montrer que $\forall x > -1$, (x+2) f(x+2) = (x+1) f(x). En déduire un équivalent de f(x) quand x tend vers $(-1)^+$.
- 3. Montrer que f est de classe \mathscr{C}^1 sur $]-1,+\infty[$.
- 4. Justifier que $\int_0^{\pi/2} \ln(\sin t) dt = \int_0^{\pi/2} \ln(\cos t) dt = \frac{1}{2} \int_0^{\pi/2} \ln(\frac{\sin(2t)}{2}) dt$. En déduire f'(0).

Exercice 4.220 ★ CCP PC 2012

Mots-clés : fonction de Bessel Soit $f: x \mapsto \frac{2}{\pi} \int_0^1 \frac{\cos(xy)}{\sqrt{1-y^2}} dy$.

- 1. Montrer que f est définie sur \mathbb{R} . Calculer f(0).
- 2. Montrer que $\forall x \in \mathbb{R}$, $f(x) = \frac{2}{\pi} \int_0^{\pi/2} \cos(x \sin t) dt$. Montrer que f est de classe \mathscr{C}^2 sur
- 3. Montrer que f est solution de xy'' + y' + xy = 0.

Exercice 4.221 ★ **CCP PC 2011**

Pour $x \in]-1,1[$, soit $f_x : \theta \in \mathbb{R} \mapsto \sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} x^n$.

- 1. Soit $x \in]-1,1[$. Montrer que f_x est définie et continue sur \mathbb{R} . Calculer $f_x(0)$ et $f_x(\pi)$.
- 2. Montrer que f_x est dérivable sur \mathbb{R} et que $\forall \theta \in \mathbb{R}$, $f'_x(\theta) = \frac{-x\sin\theta}{1-2x\cos\theta+x^2}$. En déduire la valeur de $f_x(\theta)$ pour $x \in]-1,1[$ et $\theta \in \mathbb{R}$.
- 3. Soit $x \in]-1,1[$. Calculer $\int_{-\pi}^{\pi} \ln(1-2x\cos\theta+x^2)d\theta$.
- 4. En déduire, pour $x \in]-\infty, -1[\cup]1, +\infty[$, la valeur de $\int_{-\pi}^{\pi} \ln(1-2x\cos\theta+x^2)d\theta$.

Exercice 4.222 \bigstar ENSEA PSI 2010

f(x) à $\ln(x)$ quand x tend vers l'infini.

Montrer que $f: x \mapsto \int_0^{\pi/2} \ln(x^2 + t^2) dt$ est de classe $\mathscr{C}_+^1 = \mathbb{R}_+^*$. Calculer f'(x), puis comparer

Exercice 4.223 \star Mines Ponts PSI 2014

Soit $f: x \mapsto \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2} dt$.

- 1. Quel est l'ensemble de définition de f?
- 2. Sur quels intervalles f est-elle continue? De classe \mathcal{C}^1 ?

Exercice 4.224 ★ IIE PSI 2010

Pour $n \in \mathbb{N}^*$, soit $I_n : x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(x^2 + t^2)^n}$

- 1. Quel est le domaine de définition de I_n ? Calculer I₁.
- 2. Montrer que I_n est de classe \mathscr{C}^1 sur $]0,+\infty[$ et calculer $[\frac{1}{2},\frac{1}{2},\frac{1}{2}]$] 2014 1278 CCP PSI
- 3. Trouver une relation entre $I'_n(x)$ et $I_{n+1}(x)$. En déduire une expression simple de I_n .

Exercice 4.225 \star Centrale PSI 2014

Soit $\alpha > 1$ et $f: x \mapsto \int_1^{+\infty} \frac{\mathrm{d}t}{(t^2 + y^2)^{\alpha}}$

- 1. Déterminer le domaine de définition de f.
 - 2. Montrer que f est de classe \mathscr{C}^1 sur son domaine de définition.
 - 3. Étudier l'intégrabilité de f sur son domaine de définition.

Exercice 4.226 ★ **CCP PSI 2014**

Soit $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3+x^3}$.

- 1. Montrer que f est définie et continue sur \mathbb{R}_+ .
- 2. *Calculer f* (0).
- 3. Montrer que f admet une limite en $+\infty$ et la déterminer.

Exercice 4.227 ★ TPE PC 2006

On pose $F(x) = \int_0^{+\infty} \frac{\sin(xt)}{1+t} dt$.

- 1. Ouel est l'ensemble de définition de F?
- 2. La fonction F est-elle continue? Dérivable?
- 3. Montrer que la limite de F en 0^+ vaut $\int_0^{+\infty} \frac{\sin t}{t} dt$. RMS 2015 754 Mines Ponts PC

Exercice 4.228 ★ TPE PC 2006

Existence et continuité de F définie par $F(x) = \int_0^{+\infty} \sin(t^x) dt$.

Exercice 4.229 \bigstar X ESPCI PC 2013

Déterminer $\lim_{x\to 0^+} \left(\frac{1}{x} \lim_{\varepsilon\to 0^+} \int_{\varepsilon}^x (1+\sin(2t))^{1/t} dt\right)$.

Exercice 4.230 \bigstar Centrale PC 2013

Soit $f: x \mapsto \int_0^{\pi/2} \exp(-x \sin t) dt$.

- 1. Étudier et représenter f.
- 2. Étudier la suite $(u_n)_{n\geq 0}$ définie par $u_0\in\mathbb{R}$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$.

3. La fonction f est-elle intégrable sur \mathbb{R} ? sur \mathbb{R}_+ ?

Exercice 4.231 \star Mines Ponts PC 2014

Soit F: $x \mapsto \int_0^{2\pi} e^{2x \cos t} dt$. Déterminer une équation différentielle vérifiée par F. En déduire une expression de F.

Exercice 4.232 \star Mines Ponts PSI 2014

Soit $f: x \mapsto \int_0^{+\infty} \frac{t^{x-1}}{1+t^2} dt$.

- 1. Déterminer le domaine de définition de f.
- 2. Étudier la régularité de f.
- 3. Étudier les limites aux bornes du domaine de définition.
- 4. Représenter le graphe de f.

Exercice 4.233 ★ **CCP PSI 2014**

- 1. Soit $\varphi \colon x \mapsto \int_0^1 \frac{t^{x-1}}{t+1} dt$.
 - (a) Déterminer le domaine de définition de φ.
 - (b) Montrer que φ est l'unique fonction vérifiant $\varphi(x+1) + \varphi(x) = \frac{1}{x}$ et $\lim_{x \to +\infty} \varphi(x) = \frac{1}{x}$
- 2. Soit $S = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1}$.
 - (a) Justifier l'existence de S.
 - (b) Calculer $\varphi(\frac{1}{2})$.
 - (c) En calculant $\varphi(n+\frac{1}{2})$, déterminer S.

Exercice 4.234 \bigstar Centrale PC 2014

Soit $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$

- 1. Déterminer le domaine de définition D de f.
- 2. Montrer que f est continue.
- 3. Si $x \in D$, montrer que $1 x \in D$ et que f(1 x) = f(x).
- 4. Donner un équivalent de f aux bornes du domaine de définition.

Exercice 4.235 \bigstar Mines Ponts PC 2015

Soit F: $x \mapsto \int_0^1 \frac{t^x(t-1)}{\ln t} dt$.

- 1. Déterminer le domaine de définition D de F.
- 2. Exprimer F(x) pour $x \in D$.

Exercice 4.236 \bigstar Mines Ponts PC 2014

Soit A: $(x, y) \in (\mathbb{R}_+)^2 \setminus \{(0, 0)\} \mapsto \int_0^{\pi/2} \ln(x \sin^2 \theta + y \cos^2 \theta) d\theta$.

- 1. Justifier la définition de A.
- 2. Montrer, pour $(x, y) \in (\mathbb{R}_+)^2 \setminus \{(0, 0)\}, \quad A(x, y) = A((\frac{x+y}{2})^2, xy).$

Exercice 4.237 \bigstar RMS Mines Ponts PC 2013, 2014 778 Mines Ponts PC

Existence et calcul de $F(t) = \int_0^{+\infty} \exp(-(x^2 + \frac{t^2}{x^2})) dx$.

Exercice 4.238 \bigstar CCP PSI 2014

Soit $F(x) = \int_0^{+\infty} \frac{1 - e^{-xt^2}}{t^2} dt$.

- 1. Déterminer le domaine de définition de F. La fonction F est-elle de classe \mathscr{C}^1 sur son domaine de définition?
- 2. En déduire la valeur de F(x), sachant que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice 4.239 \star Mines Ponts PC 2014

Soit F: $x \mapsto \int_0^{\pi} \sqrt{x + \cos t} dt$. Déterminer le domaine de définition de F. Étudier la continuité et la dérivabilité de F.

Exercice 4.240 \bigstar Mines Ponts PC 2014

Soit F: $x \mapsto \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$.

- 1. Montrer que F est définie et de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .
- 2. Déterminer un équivalent de F en 0^+ et en $+\infty$.

Exercice 4.241 \star Mines Ponts PC 2014

Soit $f: x \mapsto \int_0^{+\infty} \sinh(x\sqrt{t})e^{-t}dt$.

- 1. Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R} .
- 2. Déterminer une équation différentielle linéaire d'ordre 2 vérifiée par f.
- 3. Donner une expression de f.

Exercice 4.242 \bigstar Mines Ponts PC 2015, Centrale PSI 2015

Soit $f: x \mapsto \int_0^{+\infty} \frac{\ln(1+xt^2)}{t(1+t^2)} dt$.

- 1. Déterminer le domaine de définition D de f.
- 2. Montrer, pour $x \in D$, que $f(x) = -\frac{1}{2} \int_0^x \frac{\ln t}{1-t} dt$.

Exercice 4.243 \star Mines Ponts PC 2015

Soit, pour $n \in \mathbb{N}$, $I_n: x \mapsto \int_0^1 t^{nx} |\ln t|^n dt$.

- 1. Déterminer les $x \in \mathbb{R}$ tels que $I_n(x)$ existe pour tout n.
- 2. Étudier la continuité de I_n sur son domaine de définition.

Soit $h: (x, y) \in \mathbb{R}^2 \mapsto \frac{\sin x}{\cosh y - \cos x}$

- 1. Déterminer le domaine de définition de h.
- 2. Soit $x \in \mathbb{R}$. Domaine de définition et calcul de g: $y \mapsto \int_{-\infty}^{+\infty} h(x, y) dy$? Il faut ôter le « Soit $x \in \mathbb{R}$ », et étudier $g: x \in \mathbb{R} \mapsto \int_{-\infty}^{+\infty} h(x, y) dy$.
- 3. Soit $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$. On suppose que $t \mapsto e^{-t} f(t)$ est intégrable sur \mathbb{R}_+ . Montrer que $t \mapsto h(x,t) f(t)$ est intégrable sur \mathbb{R}_+ .

Exercice 4.245 \star Centrale PC 2015

Soient $(a,b) \in \mathbb{R}^2$ avec 0 < a < b et $F: x \mapsto \int_0^{+\infty} \frac{e^{at} - e^{bt}}{t} \cos(xt) dt$.

- 1. Montrer que F est définie et de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. Vérifier qu'il existe $C \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, $F(x) = \frac{1}{2} \ln(\frac{b^2 + x^2}{a^2 + x^2}) + C$.
- 3. Prouver que $F(x) = -\frac{1}{x} \int_0^{+\infty} h(t) \sin(xt) dt$ où h est une fonction à préciser. En déduire